1. катер км по течению реки и вернулся обратно, затратив на весь путь 9 часов.найдите скорость течения реки если скорость катера в стоячей воде равна 18км/ч. 2. а) х➁ (в квадрате) / х+3=1/4 ( / - это значит делить, дробь короче) б) х➁ (в квадрате) – х / x+3 = 12 / x+3 3. функция задана формулой : y= x➁(в квадрате) – 5x+6 / x➁ – 4 определите при каком значении х значение данной функции равно нулю.
По течению со скоростью (18+х)км/час 80 км за время:
80/(18+х) час
Против течения те же 80 км со скоростью (18-х)км/час за время:
80/(18-х), т.к. общее время 9час, то: 80/(18+х) + 80/(18-х) = 9;
80·(18-х) + 80·(18+х) = 9(18+х)·(18-х), раскроем скобки, сократим члены с противоположными знаками,разделим все члены уравнения на 9 и получим: х² = 4, х₁=2(км/час.
(Отрицательную скорость течения х₂ отметаем)
2.а) х²/(х+3) = 1/4; 4х² - х-3 =0; х₁ =(1+7)/8 =1; х₂ = (1-7)/8= -3/4
б) (х²-х)/(х+3) = 12/(х+3); х²-х-12 =0; х₁ = (1+7)/2=4; х₂ =(1-7)/2=-3
3. у =(х²-5х+6)/(х²-4), у=0; (х²-5х+6)/(х²-4)=0. , Отбрасываем знаменатель, так ка дробь равна нулю, когда ее числитель равен 0; х² - 5х + 6 =0; х₁=(5+1)/2 = 3: х₂ =(5-1)/2 =2