1. катер проплывает 50км по течению реки за 2 часа, а обратно за 3 часа. найти: скорость реки и катера. 2. в трех тетрадях и четырех блокнотах вместе 108 стр. в двух блокнотах столько же страниц, сколько и в трех тетрадях. найти: сколько страница в тетрадях и блокнотах.
Чтобы с таблицы задать функцию, надо отметить точки на координатной плоскости и постараться увидеть закономерность. Все функции линейные, то есть графики - прямые линии .
1) у=3х , 2) у=3х+1 , 3) у=3х-1 , 4) у=-3х , 5) у=-3х+1 .
6) Здесь линейной закономерности не просматривается . Если бы в таблице значения "х" бы ли бы 1 , 2 , 3 , 4 , то есть таблица выглядела бы так
х | 1 | 2 | 3 | 4 |
y | -4 | -7 | -10 | -13 | , то функция имела бы вид у= -3х -1 .
В этом задании скорее всего была допущена описка .
Нам нужно определить, на каких промежутках выражение под модулем отрицательно, на каких положительно, и на каких равно 0
x^2 - 3x = 0
x(x - 3) = 0
x1 = 0; x2 = 3
1) В точках x1 и x2 модуль равен 0
x1 = 0: 0 + 0 - 6 < 0 - подходит
x2 = 3: 0 + 2*3 - 6 = 0 - подходит.
2) При 0 < x < 3 будет x^2 - 3x < 0, поэтому |x^2 - 3x| = 3x - x^2
3x - x^2 + 2x - 6 <= 0
-x^2 + 5x - 6 <= 0
x^2 - 5x + 6 >= 0
(x - 2)(x - 3) >= 0
x <= 2 U x >= 3
С учетом заданного промежутка 0 < x < 3 получаем
0 < x <= 2
3) При x < 0 U x > 3 будет x^2 - 3x > 0, |x^2 - 3x| = x^2 - 3x
x^2 - 3x + 2x - 6 <= 0
x^2 - x - 6 <= 0
(x + 2)(x - 3) <= 0
-2 < x < 3
С учетом заданного промежутка x < 0 U x > 3 получаем
-2 < x < 0
Итоговое решение:
-2 < x < 0 U x = 0 U 0 < x < 2 U x = 3
ответ: -2 < x < 2 U x = 3