1. Квадрат суммы двух выражений.
2. Произведение суммы двух выражений и неполного квадрата разности.
3. Разность квадратов двух выражений.
4. Квадрат первого выражения минус удвоенное произведение первого и второго выражений плюс квадрат второго выражения.
5. Разность кубов двух выражений.
6. Произведение разности двух выражений и их суммы.
1. а3 + в3
2. (а – в)2
3. а2 – в2
4. а3 – в3
5. (а + в)2
Объяснение:
Линейное уравнение просто иксы в одну сторону, числа в другю.
Пример: x+3=0
Квадратное уравнение решается формулой (формула на картинке)
Общий вид: ax^2+bx+c=0
Кубическое уравнение решается формулой Кардано.
Общий вид: ax^3+bx^2+cx+d=0
А для уравнений выше кубической не существует общей формулы. Поэтому приходиться хитрить.
Сперва я вынес x^3 за скобку.
После таким же макаром вынес x-2 за скобку.
А уравнение такого вида называются распадающимися. Они решаются лекго. Уравнение примет значение ноль если один из множителей ноль.
Либо x-2 ноль, либо x^3-1=0.
А их просто решили.
49; 34; 30; 24
Объяснение:
По формуле Тау мы получаем, что произведение степеней простых делителей квадрата плюс 1 является произведением 99, тогда мы получаем, что квадрат числа равен либо 98 степеням некоторого простого числа, либо произведению квадрат простого числа и еще 32 степени другого простого числа. Является произведением 8 степеней простого числа и 10 степеней другого простого числа или квадрата простого числа, квадрата другого простого числа и 10 степеней другого простого числа. В первом случае мы получаем это число․ в первом случае n (неквадратный) имеет (98/2) +1 делитель, во втором случае мы получаем, что n имеет (2/2 + 1) * (32/2 + 1) делитель, третий в этом случае мы получаем, что n имеет (8/2 + 1) (10/2 + 1) делителей, а в 4-м случае мы получаем, что n имеет (2/2 + 1) * (2/2 +1) * (10 / 2 + 1) делитель