В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
joshwa77
joshwa77
29.06.2020 05:49 •  Алгебра

1+log3(x^4+25)=log√3√30x^2+12 на [-2,2; 3,2] решите эту гадость,

Показать ответ
Ответ:
vitaliysv200313
vitaliysv200313
15.01.2024 20:02
Хорошо, давайте разберемся с этим уравнением пошагово.

1+log3(x^4+25)=log√3√30x^2+12

1. Для начала сократим "log" с обоих сторон уравнения, чтобы избавиться от логарифмов:

log3(x^4+25) = log√3√30x^2+12 - 1

2. Применим свойство логарифма, которое гласит, что log(a^b) = b*log(a). Мы можем применить это свойство к обоим логарифмам:

log3(x^4+25) = (log√3√30x^2+12) - 1

3. Теперь у нас осталось одно сложное логарифмическое выражение. Для того чтобы избавиться от корня, мы можем возвести все выражение в квадрат:

(log3(x^4+25))^2 = ((log√3√30x^2+12) - 1)^2

4. Используем свойство логарифма log(a*b) = log(a) + log(b) для раскрытия скобок во втором логарифме:

(log3(x^4+25))^2 = (log√3√30x^2+12)^2 - 2*log√3√30x^2+12 + 1

5. Выполним раскрытие скобок в обоих квадратах:

(log3(x^4+25))^2 = log√3√30x^2+12 * log√3√30x^2+12 - 2*log√3√30x^2+12 + 1

6. Упростим обозначение логарифма √3√30x^2+12 как y, чтобы сократить запись:

(log3(x^4+25))^2 = y^2 - 2y + 1

7. Получившееся выражение превратилось в квадратный трином:

(log3(x^4+25))^2 - 2(log3(x^4+25)) + 1 = y^2 - 2y + 1 - 2y + 1

8. Поскольку (log3(x^4+25))^2 и 1 - 2y + 1 - 2y + 1 являются квадратными триномами, мы можем применить обратные операции к обеим сторонам уравнения для преобразования его в более простую форму:

(log3(x^4+25) - 1)^2 = 0

9. Применим квадратный корень к обеим сторонам уравнения:

√((log3(x^4+25) - 1)^2) = √(0)

10. Получим:

log3(x^4+25) - 1 = 0

11. Прибавим единицу к обеим сторонам уравнения:

log3(x^4+25) = 1

12. Теперь мы можем переписать уравнение в экспоненциальной форме:

3^1 = x^4 + 25

13. Упростим левую сторону уравнения:

3 = x^4 + 25

14. Вычитаем 25 с обеих сторон уравнения:

3 - 25 = x^4

15. -22 = x^4

16. Найдем корень четвертой степени от -22:

x = ±√(-22)

17. Заметим, что в данном случае x не имеет действительных корней, поскольку корень из отрицательного числа невозможен в вещественных числах.

Таким образом, уравнение не имеет решений на интервале [-2,2; 3,2].
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота