11sin^2 a + 9cos^2 a + 8sin^4 a + 2cos^4 a = = 9sin^2 a + 9cos^2 a + 2sin^2 a + 6sin^4 a + 2(sin^4 a + 2cos^4 a) = (*) Заметим, что 1) 9sin^2 a + 9cos^2 a = 9(sin^2 a + cos^2 a) = 9 2) sin^4 a + cos^4 a = sin^4 a + 2sin^2 a*cos^2 a + cos^4 a - 2sin^2 a*cos^2 a = = (sin^2 a + cos^2 a)^2 - 2sin^2 a*cos^2 a = 1 - 1/2*(4sin^2 a*cos^2 a) Подставляем (*) = 9 + 2sin^2 a + 6sin^4 a + 2 - 4sin^2 a*cos^2 a = = 11 + 4sin^2 a - 2sin^2 a + 6sin^4 a - 4sin^2 a*cos^2 a = = 11 - 2sin^2 a + 6sin^4 a + 4sin^2 a*(1 - cos^2 a) = = 11 - 2sin^2 a + 6sin^4 a + 4sin^4 a = 11 - 2sin^2 a + 10sin^4 a = = 10(sin^4 a - 2*1/10*sin^2 a + 1/100) - 1/10 + 11 = = 10(sin^2 a - 1/10)^2 + 109/10 Минимальное значение квадрата равно 0, а всего выражения 109/10.
Тогда так: Сумма минус трех целых пяти десятых и четырех целых пяти десятых равна одной целой. Что бы это решить мне потребовалось сделать следующее - Найти модули слагаемых. Затем из большего модуля вычитаем меньший, если больший модуль был отрицательным числом (модули - это всегда положительные числа. Здесь имелось ввиду число до превращения в модуль), то разность модулей будет отрицательной. А если больший модуль остался числом положительным, то разность будет положительная. В нашем случае мы пользуемся последним и поэтому ответ будет одна целая(четыре целых пять десятых минус три целых пять десятых равняется одной целой).
= 9sin^2 a + 9cos^2 a + 2sin^2 a + 6sin^4 a + 2(sin^4 a + 2cos^4 a) = (*)
Заметим, что
1) 9sin^2 a + 9cos^2 a = 9(sin^2 a + cos^2 a) = 9
2) sin^4 a + cos^4 a = sin^4 a + 2sin^2 a*cos^2 a + cos^4 a - 2sin^2 a*cos^2 a =
= (sin^2 a + cos^2 a)^2 - 2sin^2 a*cos^2 a = 1 - 1/2*(4sin^2 a*cos^2 a)
Подставляем
(*) = 9 + 2sin^2 a + 6sin^4 a + 2 - 4sin^2 a*cos^2 a =
= 11 + 4sin^2 a - 2sin^2 a + 6sin^4 a - 4sin^2 a*cos^2 a =
= 11 - 2sin^2 a + 6sin^4 a + 4sin^2 a*(1 - cos^2 a) =
= 11 - 2sin^2 a + 6sin^4 a + 4sin^4 a = 11 - 2sin^2 a + 10sin^4 a =
= 10(sin^4 a - 2*1/10*sin^2 a + 1/100) - 1/10 + 11 =
= 10(sin^2 a - 1/10)^2 + 109/10
Минимальное значение квадрата равно 0, а всего выражения 109/10.
Сумма минус трех целых пяти десятых и четырех целых пяти десятых равна одной целой. Что бы это решить мне потребовалось сделать следующее -
Найти модули слагаемых. Затем из большего модуля вычитаем меньший, если больший модуль был отрицательным числом (модули - это всегда положительные числа. Здесь имелось ввиду число до превращения в модуль), то разность модулей будет отрицательной. А если больший модуль остался числом положительным, то разность будет положительная. В нашем случае мы пользуемся последним и поэтому ответ будет одна целая(четыре целых пять десятых минус три целых пять десятых равняется одной целой).
Ну надеюсь более-менее понятно. Мда...