За интеграл я буду Июиспользовать вот этот знак:
1) Перепишите дробь:
2) Использовать свойства интегралов:
3) Вычислить интегралы и прибавить константу интегрирования С:
1) Найти неопределённый интеграл:
2) Упростить интеграл, используя метод замены переменной:
3) Преобразовать выражения:
4) Вычислить произведение:
5) Использовать свойство интегралов:
6) Вычислить интегралы:
7) Выполнить обратную замену:
8) Упростить выражение:
9) Вернуть пределы интегрирования и подставить в пример (8):
Найдем уравнение касательной, проходящей через точку с абсциссой
Для этого найдем производную данной функции:
Найдем значение функции в точке с абсциссой :
Найдем значение производной данной функции в точке с абсциссой :
Уравнение касательной имеет вид:
Подставим значение
Итак, уравнение касательной заданной функции:
Воспользуемся геометрическим смыслом касательной: коэффициент наклона касательной численно равен тангенсу угла наклона с положительным направлением оси
В найденной касательной коэффициент , следовательно, при или
ответ: или
За интеграл я буду Июиспользовать вот этот знак:
4 пример:1) Перепишите дробь:
2) Использовать свойства интегралов:
3) Вычислить интегралы и прибавить константу интегрирования С:
5 пример:1) Найти неопределённый интеграл:
2) Упростить интеграл, используя метод замены переменной:
3) Преобразовать выражения:
4) Вычислить произведение:
5) Использовать свойство интегралов:
6) Вычислить интегралы:
7) Выполнить обратную замену:
8) Упростить выражение:
9) Вернуть пределы интегрирования и подставить в пример (8):
6 примерНайдем уравнение касательной, проходящей через точку с абсциссой
Для этого найдем производную данной функции:
Найдем значение функции в точке с абсциссой :
Найдем значение производной данной функции в точке с абсциссой :
Уравнение касательной имеет вид:
Подставим значение
Итак, уравнение касательной заданной функции:
Воспользуемся геометрическим смыслом касательной: коэффициент наклона касательной численно равен тангенсу угла наклона с положительным направлением оси
В найденной касательной коэффициент , следовательно, при или
ответ: или