Объяснение:
решаю задачу с другим условием по согласованию с автором вопроса
Яке значення може приймати градусна міра кута а?
cos (x+a ) = - sin x
по формулам приведения мы знаем что косинус меняется на синус (и наоборот) если добавить угол равный 90 + 180*n
а если добавить угол равный 180*n может поменяться знак но функция не изменится
итак
косинус превратился в синус значит угол а это 90 или 270
далее
при малом х синус положительный
по условию cos (x+a ) = - sin(x) - отрицательный
отрицательный косинус в 2 и 3 четверти
(x+a) должен лежать в 2 или 3 четверти
при малом х нам подходит либо 90 либо 180
смотрим ранее (90 или 270) и то что получили только что (90 или 180) и понимаем что ответ 90 - это ответ
1) 2cosx-1 < 0
cosx < 1/2
arccos(1/2) + 2πn < x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < x < 2π - π/3 + 2πn, n ∈ Z
π/3 + 2πn < x < 5π/3 + 2πn, n ∈ Z
2) sin2x - √2/2 < 0
sin2x < √2/2
- π - arcsin(√2/2) + 2πk < 2x < arcsin(√2/2) + 2πk, k ∈ Z
- π - π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/8 + πk < x < π/8 + πk, k ∈ Z
3) tgx<1
- π/2 + πn < x < arctg(1) + πn, n ∈ Z
- π/2 + πn < x < π/4 + πn, n ∈ Z
Объяснение:
решаю задачу с другим условием по согласованию с автором вопроса
Яке значення може приймати градусна міра кута а?
cos (x+a ) = - sin x
по формулам приведения мы знаем что косинус меняется на синус (и наоборот) если добавить угол равный 90 + 180*n
а если добавить угол равный 180*n может поменяться знак но функция не изменится
итак
косинус превратился в синус значит угол а это 90 или 270
далее
при малом х синус положительный
по условию cos (x+a ) = - sin(x) - отрицательный
отрицательный косинус в 2 и 3 четверти
(x+a) должен лежать в 2 или 3 четверти
при малом х нам подходит либо 90 либо 180
смотрим ранее (90 или 270) и то что получили только что (90 или 180) и понимаем что ответ 90 - это ответ