В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
nazfire2003
nazfire2003
10.11.2021 03:30 •  Алгебра

1. напишите уравнение касательной к графику функции у = f(х) в точке графика с абсциссой х0, если: а) f(х)= х^2 + 6х-7, х0 = -2; б) f(х) = cosх, х0=1; в) f(х) = (x+2)^2, х0 = 2. 2. дана функция f(х)= х^3-зх^2-зх + 5. напишите уравнение касательной к графику функции у = f(х), параллельной прямой у = -зх + 4. 3. дана функция f(х) = х^2 + 2х-2. напишите уравнение касательной к графику функции у = f(х), проходящей через точку а(0; -6). 4. даны функции f(х) = х^2 + 2х + 4 и g(х) = -х^2-1. напишите уравнение общей касательной к графикам функций у = f(х) и у = g(х).

Показать ответ
Ответ:
khokhr
khokhr
03.10.2020 12:45
А) 1) f(x0)=(-2)^2+6*(-2)-7=4-12-7=-15 2) f'(x)=2x-6 3) y=2*(-2)-6=-10 4) y=-15+(-10)(x-(-2)) y=-15-10x-20 y=-35-10x ответ: y=-35-10x
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота