система имеет бесконечно много решений если мы имеем тождество, не зависящее от переменных:
для этого нужно, чтобы коэфф. при х, у и правая часть совпадали с точностью до множителя. сейчас поясню:
в первом уравнении при х стоит 4, во втором 20, 20 = 4*5
в правой части первого уравнения стоит 3, во втором 15, 15 = 3*5
значит -а*5=10 => а=-2
при этом а, если мы домножим первое уравнение на 5 и вычтем из 2, получим 0 = 0 - это тождество верное при любых х и у, то есть решений бесконечно много
-2
Объяснение:
система имеет бесконечно много решений если мы имеем тождество, не зависящее от переменных:
для этого нужно, чтобы коэфф. при х, у и правая часть совпадали с точностью до множителя. сейчас поясню:
в первом уравнении при х стоит 4, во втором 20, 20 = 4*5
в правой части первого уравнения стоит 3, во втором 15, 15 = 3*5
значит -а*5=10 => а=-2
при этом а, если мы домножим первое уравнение на 5 и вычтем из 2, получим 0 = 0 - это тождество верное при любых х и у, то есть решений бесконечно много
Абсцисса (х₀) вершины параболы= -0,6
Объяснение:
Определи абсциссу вершины параболы, проходящей через точки c координатами (0;−7), (3;3), (−3;−3).
(ответ округли до десятых).
Уравнение параболы у=ах²+вх+с
Подставим в уравнение известные значения х и у (координаты точек):
а*0²+в*0+с= -7
а*3²+в*3+с=3
а*(-3)²+в*(-3)+с= -3
Из первого уравнения с= -7, подставим значение с во 2 и 3 уравнения:
9а+3в-7=3
9а-3в-7= -3
Складываем уравнения:
9а+9а+3в-3в-7-7=3-3
18а-14=0
18а=14
а=14/18
а=7/9
Подставим значение а во 2 или 3 уравнение, вычислим в:
9а+3в-7=3
9а+3в=3+7
3в=10-9*7/9
3в=3
в=3/3
в=1
Формула абсциссы (х₀)= -в/2а= -1/(14/9)= -9/14= -0,6