1.Найди значение переменной x, если {2x+y=12 6x−y=0
2.Дана система двух линейных уравнений:
{y+24x=2 3y−24x=4
Найди значение переменной y.
3.Дана система уравнений: {4a+b=100 a−b=0
Вычисли значение переменной b.
4.Реши систему уравнений: {2x−y=7 x−2,5y=15
5.Реши систему уравнений: {2x+10y=24 4x−5y=7
Чтобы с таблицы задать функцию, надо отметить точки на координатной плоскости и постараться увидеть закономерность. Все функции линейные, то есть графики - прямые линии .
1) у=3х , 2) у=3х+1 , 3) у=3х-1 , 4) у=-3х , 5) у=-3х+1 .
6) Здесь линейной закономерности не просматривается . Если бы в таблице значения "х" бы ли бы 1 , 2 , 3 , 4 , то есть таблица выглядела бы так
х | 1 | 2 | 3 | 4 |
y | -4 | -7 | -10 | -13 | , то функция имела бы вид у= -3х -1 .
В этом задании скорее всего была допущена описка .
Обозначим время до встречи автобусов за t,
-cкорость V1 первого автобуса равна:
V1=132/(t+50/60)
-cкорость второго автобуса равна:
V2=132/(t+1 12/60)
Скорость сближения автобусов равна:
132/(t+50/60)+132/(t+1 12/60)=132/t
132/(t+5/6)+132/(t+1,2)=132/t приведём уравнение к общему знаменателю (t)*(t+5/6)*(t+1,2)
t*(t+1,2)*132+t*(t+5/6)*132=(t+5/6)*(t+1,2)*132
132t²+158,4t+132t²+110t=(t²+5/6*t+1/2t+1)*132
132t²+158,4t+132t²+110t=132t²+110t+158,4t+132
132t²+158,4t+132t²+110t-132t²-110t-158,4t-132=0
132t²-132=0
132t²=132
t²=132/132
t²=1
t=√1
t=1
Отсюда:
-скорость первого автобуса равна: V1=132/(1+50/60)=132/(1+5/6)=
=132/(11/6)=72(км/час)
-скорость второго автобуса равна: V2=132/(1+1 12/60)=132/(1+1,2)=132/2,2=60(км/час)
ответ: скорость первого автобуса 72км/час; скорость второго автобуса 60км/час