. 1. Найдите 23 - й член арифметической прогрессии (An), если а1 = -15 и d = 3
2. Найдите сумму 16 первых членов арифметической прогрессии 8;4;0;...
3. Найдите сумму 60 первых членов последовательности (bn), заданной формулой bn = 3n - 1
4. Является ли число 54,5 членом арифметической прогрессии (An), в которой
A1 = 25,5 и А9 = 5,5 ?
(Пояснение. Имеем 5 цифр. На первое место можно поставить любую из имеющихся пяти цифр, т.е. 7,8,5,1 и 0. Второе место "занято" цифрой 5, т.е. всего один вариант. На третье и на четвёртое место можно поставить любую из имеющихся пяти цифр (см. рассуждение выше). На последнем месте - единственный вариант - цифра ноль). Осталось только перемножить полученные варианты и вывести результат)
для m < 0 решений НЕТ
для m >= 0 возможны два варианта:
x^2 + 3x + (4-m) = 0 или x^2 + 3x + (4+m) = 0
D= 9-4(4-m) = 4m - 7 D= 9-4(4+m) = -4m - 7
условие существования корней D ≥ 0
4m - 7 ≥ 0 -4m - 7 ≥ 0
для m < 7/4 корней нет для m > -7/4 корней нет
для m ≥ 7/4
x₁;₂ = (-3 +-√(4m-7)) / 2
для m < 7/4 корней НЕТ