Для того, чтобы упростить выражение, используем следующие формулы тригонометрии:
sin^2 x + cos^2 x = 1;
cos (2 * x) = cos^2 x - sin^2 x;
sin (2 * x) = 2 * sin x * cos x.
Тогда получаем:
1 - sin (2 * a) - cos (2 * a) = sin^2 a + cos^2 a - (2 * sin a * cos a) - (cos^2 a - sin^2 a) = sin^2 a + cos^2 a - 2 * sin a * cos a - cos^2 a + sin^2 a;
Сгруппируем подобные значения.
(sin^2 a + sin^2 a) + (cos^2 a + cos^2 a) - 2 * sin a * cos a = 2 * sin^2 a - 2 * sin a * cos a = 2 * sin a * (sin a - cos a).
Упростим выражение 1 - sin (2 * a) - cos (2 * a).
Для того, чтобы упростить выражение, используем следующие формулы тригонометрии:
sin^2 x + cos^2 x = 1;
cos (2 * x) = cos^2 x - sin^2 x;
sin (2 * x) = 2 * sin x * cos x.
Тогда получаем:
1 - sin (2 * a) - cos (2 * a) = sin^2 a + cos^2 a - (2 * sin a * cos a) - (cos^2 a - sin^2 a) = sin^2 a + cos^2 a - 2 * sin a * cos a - cos^2 a + sin^2 a;
Сгруппируем подобные значения.
(sin^2 a + sin^2 a) + (cos^2 a + cos^2 a) - 2 * sin a * cos a = 2 * sin^2 a - 2 * sin a * cos a = 2 * sin a * (sin a - cos a).
Объяснение:
=1/5*6^1024-1/5[(6^512+1)(6^256+1)(6^128+1)(6^64+1)(6^32+1)(6^16+1)(6^8+1)(6^4+1)(6^4-1)]=1/5*6^1024-1/5[(6^512+1)(6^256+1)(6^128+1)(6^64+1)(6^32+1)(6^16+1)(6^8+1)(6^8-1)]=1/5*6^1024-1/5[(6^512+1)(6^256+1)(6^128+1)(6^64+1)(6^32+1)(6^16+1)(6^16-1)=1/5*6^1024-1/5[(6^512+1)(6^256+1)(6^128+1)(6^64+1)(6^32+1)(6^32-1)]=1/5*6^1024-1/5[(6^512+1)(6^256+1)(6^128+1)(6^64+1)(6^64-1)]=1/5*6^1024-1/5[(6^512+1)(6^256+1)(6^128+1)(6^128-1)]=1/5*6^1024-1/5[(6^512+1)(6^256+1)(6^256-1)]=1/5*6^1024-1/5[(6^512+1)(6^512-1)]=1/5*6^1024-1/5(6^1024-1)=1/5*6^1024-1/5*6^1024+1/5=0,2