Определить коэффициент а и найти решение системы уравнений графически:
ax + 3y = 11
5x +2y = 12, если известно что первое уравнение этой системы обращается в верное равенство при x=8 и y= -7.
1) Вычисляем а. Для этого в первое уравнение подставляем заданные значения х и у:
ax + 3y = 11
а*8+3*(-7)=11
8а-21=11
8а=11+21
8а=32
а=4
Решим графически систему уравнений:
4x + 3y = 11
5x +2y = 12
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем уравнения в более удобный для вычислений вид:
4x + 3y = 11 5x +2y = 12
3у=11-4х 2у=12-5х
у=(11-4х)/3 у=(12-5х)/2
Таблицы:
х -1 2 5 х -2 0 2
у 5 1 -3 у 11 6 1
Согласно графика, координаты точки пересечения прямых (2; 1)
б.
Оскільки периметр обчислюється за формулою P = 2 • (a + b), де а - довжина, b - ширина, тоді сума довжини і ширини рівна половині периметра,
тобто а + b = Р:2
За умовою задачі довжина b=a+40, тому а+а+40=P:2
680 : 2 = 340 (м) – сума довжини та ширини ділянки.
340 – 40 = 300 (м) – подвійна ширина ділянки.
300 : 2 = 150 (м) – ширина ділянки.
150 + 40 = 190 (м) – довжина ділянки.
б.
Нехай х (м) – ширина ділянки , тоді х + 40 (м) – довжина ділянки, складемо рівняння:
Периметр обчислюється за формулою P = 2 • (a + b), де а - довжина, b - ширина.
2 • ( х + х + 40)= 680
Щоб знайти невідомий множник, треба добуток поділити на відомий множник.
(х + х + 40) = 680 : 2
2х + 40 = 340
Щоб знайти невідомий доданок, треба від суми відняти відомий доданок.
2х = 340 – 40
2х = 300
х = 300 : 2
х = 150
150 (м) – ширина ділянки, тоді
150 + 40 = 190 (м) – довжина ділянки.
Відповідь: 190 метрів.
Координаты точки пересечения прямых (2; 1)
Решение системы уравнений (2; 1)
Объяснение:
Определить коэффициент а и найти решение системы уравнений графически:
ax + 3y = 11
5x +2y = 12, если известно что первое уравнение этой системы обращается в верное равенство при x=8 и y= -7.
1) Вычисляем а. Для этого в первое уравнение подставляем заданные значения х и у:
ax + 3y = 11
а*8+3*(-7)=11
8а-21=11
8а=11+21
8а=32
а=4
Решим графически систему уравнений:
4x + 3y = 11
5x +2y = 12
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем уравнения в более удобный для вычислений вид:
4x + 3y = 11 5x +2y = 12
3у=11-4х 2у=12-5х
у=(11-4х)/3 у=(12-5х)/2
Таблицы:
х -1 2 5 х -2 0 2
у 5 1 -3 у 11 6 1
Согласно графика, координаты точки пересечения прямых (2; 1)
Решение системы уравнений (2; 1)