1. Найдите параболы, у которых ветви направлены вверх:
1) у =2х²; 2) у = (2-х)²; 3) у = 4 – 5х - х²; 4) у = х²+5х+4.
А) только 4); В) 1), 2); С) у всех; Д) 1), 2), 4).
ответ Д
2. Найдите координаты вершины параболы у = х²-4х+3.
А) (1;-4); В) (3;1); С) (-4;3); Д) (2;-1).
3. Найдите ось симметрии параболы у = х²+2х+3.
А) х =0; В) х =1; С) х =2; Д) х = -1.
4. Найдите абсциссы точек пересечения графика функции у = х²+2,5х – 1,5 с осью Ох:
А) х = -1,5; х = -1; В) х =1,5; х = -1; С) х = -0,5; х = -3; Д) х = -3; х =0,5.
5. Найдите координаты точек пересечения графика функции у = - х²+2х-3 с осью ординат:
А) (0;3); В) (0; -3); С) (-1; 3); Д) (1; -3).
6. Как можно получить график функции у = х²-5 из графика функции у = х², сдвигая его вдоль оси:
А) Оу на 5 единиц вверх;
В) Оу на 5 единиц вниз;
С) Ох на 5 единиц вправо;
Д) Ох на 5 единиц влево.
ответ: В)
7. График функции у = (х+3)² можно получить из графика функции у = х² сдвигом вдоль оси:
А) Ох на 3 единицы вправо;
В) Ох на 3 единицы влево;
С) Оу на 3 единицы вниз;
Д) Оу на 3 единицы вверх.
ответ:В)
8. Сколько точек пересечений имеют графики функций у = х²+4х +4 и у = - х²-2х +1:
А) Не имеют точек; В) Одну точку;
С) Две точки; Д) Бесконечное множество.
p=m/n
n=90 ( количество двузначных чисел)
Числа делящиеся на 3:
12; 15;... 99 - таких чисел 30
Можно найти их количество по формуле n-го члена арифметической прогрессии
a₁=12
d=15-12=3
99=12+3·(n-1) ⇒87=3(n-1) n-1=29 n=30
Числа делящиеся на 5:
10; 15;20; 25; 30;...; 95 - таких чисел 30
Можно найти их количество по формуле n-го члена арифметической прогрессии
a₁=10
d=15-10=5
95=10+5·(n-1) ⇒85=5(n-1) n-1=19 n=20
Чисел, которые одновременно делятся и на 3 и на 5 всего 6:
15;30;45;60;75 и 90
m=30+20-6=44
p=44/90=22/45
1) Если он шел половину пути S/2 со скоростью v1 = 4 км/ч, и ещё S/2 с v2 = 6 км/ч,
то он затратил время t1 = (S/2) / 4 = S/8 ч, и t2 = (S/2) / 6 = S/12 ч.
А всего T = t1 + t2 = S/8 + S/12 = 3S/24 + 2S/24 = 5S/24
средняя скорость v = S / (5S/24) = 24/5 = 48/10 = 4,8 км/ч.
2) Если он шел половину времени T/2 с v1 = 4 км/ч, и ещё T/2 c v2 = 6 км/ч, то
он путь s1 = T/2*4 = 2T и s2 = T/2*6 = 3T
S = s1 + s2 = 2T + 3T = 5T
Средняя скорость V = S/T = 5T/T = 5 км/ч.
На самом деле, если он шел половину времени с v1, и еще половину времени с v2,
то средняя скорость V = (v1 + v2)/2.
И эта средняя скорость V всегда больше, чем в 1 пункте. V > v.
ответ: на первую прогулку скорость 4,8 км/ч. На вторую скорость 5 км/ч.