Б) f(x)=4-2x f`(x)=(4-2x)`=(4)`-(2x)`=0-2·(x)`=-2·1=-2 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (-2) f`(0,5)=f`(-3)=-2
в) f(x)=3x-2 f`(x)=(3x-2)`=(3х)`-(2)`=3·(x)`-0=3·1=3 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (3) f`(5)=f`(-2)=3
f(x) = -2x² - x + 5 - квадратичная функция, график - парабола с ветвями, направленными вниз.
I x₀ = -b / (2a) = 1/(-2) = -0,5; y₀ = 5; B(-0,5; 5,25) - вершина параболы
Ось симметрии - прямая x = x₀, то есть в нашем x = -0,5;
Пункт 4) задания мы решили!
II В качестве точек для построения берем:
III Строим график (см. рисунок)
1) При x = -0,3; y ≈ 4,5; при x = 1,2; y ≈ 0,9; при x = 3; y = -16 (здесь проще подставить в функцию...)
2) y = 5 при x = 0 и при x = -0,5; y = 2 при x = 1 и при x = -1,5; y = -1 при x = -2 и при x = 1,5;
3) Нули функции (точки пересечения графика с осью OX)
При x₁ ≈ -1,9 или x₂ ≈ 1,4; y = 0;
Промежутки знакопостоянства:
При x ∈ (-∞; x₁) ∪ (x₂; +∞), f(x) < 0 (x ∈ (-∞; -1,9) ∪ (1,4; +∞))
При x ∈ (x₁; x₂), f(x) > 0 (x ∈ (-1,9; 1,4))
f`(x)=(4-2x)`=(4)`-(2x)`=0-2·(x)`=-2·1=-2
Применили правила:
производная суммы( разности) равна сумме( разности) производных
Производная постоянной (C)`=0
Постоянный множитель можно вынести за знак производной
(х)`=1
Производная принимает во всех точках одно и то же значение (-2)
f`(0,5)=f`(-3)=-2
в) f(x)=3x-2
f`(x)=(3x-2)`=(3х)`-(2)`=3·(x)`-0=3·1=3
Применили правила:
производная суммы( разности) равна сумме( разности) производных
Производная постоянной (C)`=0
Постоянный множитель можно вынести за знак производной
(х)`=1
Производная принимает во всех точках одно и то же значение (3)
f`(5)=f`(-2)=3