Из 100 туристов немецкий знают 30 чкловек. английский - 28, французский - 42. Английский и нимецкий одновременно -8 человек, английский и французский -5 человек, всеми тремя языками владеют 3 человека. Сколько туристов не владеют ни одним из этих языков
Решение: Выразим условие этой задачи графически. Обозначим кругом тех, кто знает английский, другим кругом - тех, кто знает французский, и третьим кругом - тех, кто знают немецкий. (После начертания кругов видим, что в условии задачи пропущено владение немецким и французским языками - поэтому решу задачу так, как решал ее раньше). Всеми тремя языками владеют три туриста, значит, в общей части кругов вписываем число 3. Английским и французским языком владеют 10 человек, а 3 из них владеют еще и немецким. Следовательно, только английским и французским владеют 10-3=7 человека. Аналогично получаем, что только английским и немецким владеют 8-3=5 человек, а немецким и французским 5-3=2 туриста. Вносим эти данные в соответствующие части. Определим теперь, сколько человек владеют только одним из перечисленных языков. Немецкий знают 30 человек, но 5+3+2=10 из них владеют и другими языками, следовательно, только немецкий знают 20 человек. Аналогично получаем, что одним английским владеют 13 человек, а одним французским - 30 человек. По условию задачи всего 100 туристов. 20+13+30+5+7+2+3=80 туристов знают хотя бы один язык, следовательно, 20 человек не владеют ни одним из данных языков.
Из 100 туристов немецкий знают 30 чкловек. английский - 28, французский - 42. Английский и нимецкий одновременно -8 человек, английский и французский -5 человек, всеми тремя языками владеют 3 человека. Сколько туристов не владеют ни одним из этих языков
Решение: Выразим условие этой задачи графически. Обозначим кругом тех, кто знает английский, другим кругом - тех, кто знает французский, и третьим кругом - тех, кто знают немецкий. (После начертания кругов видим, что в условии задачи пропущено владение немецким и французским языками - поэтому решу задачу так, как решал ее раньше). Всеми тремя языками владеют три туриста, значит, в общей части кругов вписываем число 3. Английским и французским языком владеют 10 человек, а 3 из них владеют еще и немецким. Следовательно, только английским и французским владеют 10-3=7 человека. Аналогично получаем, что только английским и немецким владеют 8-3=5 человек, а немецким и французским 5-3=2 туриста. Вносим эти данные в соответствующие части. Определим теперь, сколько человек владеют только одним из перечисленных языков. Немецкий знают 30 человек, но 5+3+2=10 из них владеют и другими языками, следовательно, только немецкий знают 20 человек. Аналогично получаем, что одним английским владеют 13 человек, а одним французским - 30 человек. По условию задачи всего 100 туристов. 20+13+30+5+7+2+3=80 туристов знают хотя бы один язык, следовательно, 20 человек не владеют ни одним из данных языков.
1) 2х - 3(1 + х) = 5 + х 2) 2(3 - х) + 7х = 4 - (3х + 2)
2х - 3 - 3х = 5 + х 6 - 2х + 7х = 4 - 3х - 2
2х - 3х - х = 5 + 3 - 2х + 7х + 3х = 4 - 2 - 6
- 2х = 8 8х = - 4
х = 8 : (-2) х = - 4 : 8
х = - 4 х = - 0,5
Задача. Пусть х - задуманное число:
3х - 10 = 0,5х
3х - 0,5х = 10
2,5х = 10
х = 10 : 2,5
х = 4
Проверка: 4 * 3 - 10 = 0,5 * 4
12 - 10 = 2 - полученное число вдвое меньше задуманного
ответ: Лена задумала число 4.