1. Найдите возрастающую функцию f и убывающую функцию g так, чтобы функция f + g возрастала. Доказать. 2. Если функция f ограничена на интервале I, то - f также ограничена на этом интервале. Доказать
Пусть скорость течения реки - х км/ч Вверх по реке - это значит плывет против течения... S=6 км проплыл сначала. Скорость лодки в стоячей воде 90 м/мин = (90*60) /1000 км/час = = 5,4 км/час Время после отправления из N это t=4 часа 30 минут= 4,5 ч Составим уравнение 6 / (5,4-х) + 6 / х = 4,5 6х + 6* (5,4-х) = 4,5х* (5,4-х) 324 + 45x^2 - 243x = 0 5x^2 - 27 + 36 = 0 полное квадратное уравнение. D = 27² - 4* 5* 36 = 729-720=9 x1 = (27-3) /10 = 2,4 км/ч x2 = 3 км/час Задача имеет 2 решения х=2,4 км/ч и х=3 км/ч
Х-собственная скорость лодких-2-скорость против течения по реке 6/(х-2)- время передвижения на лодке по реке15/х-время передвижения на лодке по озеру Т.к. разница между временем движения по озеру и реке составляет 1 час,то: 15/х-6/(х-2)=1 (х-2)*15/х-(х-2)*6/(х-2)=(х-2)*1раскрываем скобки,все умножаем,затем умножаем все на х,переносим все в правую сторону,получается:-х^2+11*x+30=0x^2-11*x+30=0Дискриминант=(-11)^2-4*(1*30)=1>0, то 2 корнях1,2=(-b^2+- корень из D)/2*a х1 = 5км/ч, х2 = 6 км/ч-оба подходят,так как оба больше нуля.
Вверх по реке - это значит плывет против течения...
S=6 км проплыл сначала.
Скорость лодки в стоячей воде 90 м/мин = (90*60) /1000 км/час =
= 5,4 км/час
Время после отправления из N это t=4 часа 30 минут= 4,5 ч
Составим уравнение
6 / (5,4-х) + 6 / х = 4,5
6х + 6* (5,4-х) = 4,5х* (5,4-х)
324 + 45x^2 - 243x = 0
5x^2 - 27 + 36 = 0 полное квадратное уравнение.
D = 27² - 4* 5* 36 = 729-720=9
x1 = (27-3) /10 = 2,4 км/ч
x2 = 3 км/час
Задача имеет 2 решения х=2,4 км/ч и х=3 км/ч
х1 = 5км/ч, х2 = 6 км/ч-оба подходят,так как оба больше нуля.