1. найдите значение выражения: 1,5-2 -3-
2. представьте в виде степени выражение:
1) а” -а* 2) а = a* 3) (а) 4) 2
17
•
его
3. преобразуйте выражение в одночлен
стандартного вида:
1) – 3x'yx° -4 у 2) (-4a°ь)
4. представьте в виде многочленов стандартного
вида выражение: (ба” – 2а - 3)- (2а* + 2а - 5)
5. вычислите:
495 712
2
34372
) 4.
6. выражение: 81х”
7. вместо звездочки запишите такой многочлен,
чтобы образовалось тождество:
(5х* - 3xy +y)-(*) = x' + 3xy
8. докажите, что значение выражения
(14n +19) - (8n -5) кратно б при любом
натуральном п.
9. известно, что 4a'b = -5 . найдите значение
выражения: 1) - 8a'b 2) 4a°ь?
!
1) 200, 600 и 700;
2) 100, 500 и 900;
3) 300, 400 и 800.
Приступаем к взвешиванию.
1. Погружаем на чаши весов две кучки - любые, к примеру, на левую чашу - кучку № 1, на правую - кучку № 2. Если одна из кучек оказалась легче другой, значит, фальшивый эталон в ней, этой самой легкой кучке; если обе кучки весят одинаково, то кучка с затесавшимся в нее фальшивым эталоном - третья, т.е. та, которую не взвешивали.
2. Берем "лёгкую" кучку и выбираем из нее две гирьки (третью гирьку убираем подальше, но не смешиваем с остальными, потому что остальные - наверняка полновесные, а эта, отдельно лежащая, может оказаться той самой, которую мы пытаемся обнаружить). Затем кладем в две чаши весов две выбранные ранее гирьки - те, что у меня выделены жирным шрифтом; к каждой добавляешь из "хороших" гирь одну так, чтобы на левой и правой чаше номинальный вес получился одинаковым. Взвешиваем. Если чаши уравновесились, то фальшивая гиря - та, что отложена. Если одна чаша легче, то фальшивая на ней, и именно та, что сначала была выделена жирным шрифтом))).
Для лучшего понимания приведу пример.
Вот разделили мы гири на 3 кучки так, как я предлагала сначала. Повторю раскладку:
1) 200, 600 и 700;
2) 100, 500 и 900;
3) 300, 400 и 800.
Взвешиваем первую и вторую кучки.
Если легче оказалась первая, гирьку, к примеру, в 700 г откладываем отдельно, а гирьки на 200 и 600 г и кладем на разные чаши весов; к первой добавляем из второй, хорошей, кучки гирю в 900 г, а ко второй - гирю в 500 г (потенциально плохие гирьки я выделяю жирным). В итоге на каждой чаше должно лежать по 1100 г. Если они и вправду весят одинаково, то фальшивая гирька - отложенная, т.е. 700 г. Если легче первая чаша, то плохая гирька - 200 г, если вторая - то 600 г.
Если легче оказалась вторая кучка, то откладываем гирьку в 100 г, а на весы кладем гири в том же порядке, что и в раз. Тогда в случае равновесия плохая - 100 г, если легче первая чаша - то 900 г, а если легче вторая - то 500 г.
Если первые две кучки равновесны, то распределяем для проверки третью кучку, потому что фальшивка - в ней. Допустим, 800 откладываем в сторонку, 300 кладем на левую чашу, а 400 на правую. Добавляем на левую 700 г, на правую 600 г. Взвешиваем. Вес равный - тогда фальшивая 800 г, левая легче - фальшивка 300 г, правая легче - фальшивая гиря в 400 г.
Аминь.
750 чисел
Объяснение:
На 2 делятся чётные числа, поэтому на месте числа единиц числа может стоять цифра 0, 2, 4 и 6.
1) Число единиц равно выбора
На остальные места тысяч, сотен, десятков и единиц выбираем числа из данных: 1,2,3,4,5,6,7 (всего 7 цифр).
Тысячи выбора, сотни десятки
Перемножим полученное количество чисел.
2) Число единиц равно выбора
На остальные места тысяч, сотен, десятков и единиц выбираем числа из данных: 0,1,3,4,5,6,7 (всего 7 цифр). Но, ноль нельзя поставить на место тысяч!
Тысячи - 6, сотни - 6, десятки - 5
Перемножим полученное количество
3) Аналогичные результаты (см. 2) получим, если поставим на место единиц цифры 4 и 6.
4) Осталось сложить все полученные результаты:
210+3*180=210+540=750 четырёхзначных чисел можно составить