1. найдите значение выражения v64-v36 v4.
2. сравните числа:
а) v99 и 10; б) зv11 и 2v22; в) v2+v5 и v7.
3. освободитесь от модуля:
а) /v24 – 3v3; б) 4v5-v80); в) v88 - 4v3).
4. найдите значение выражения (v5 – 1) - (v5 + 1).
3v3 - 5
5. докажите, что число на
(vз- 1а является рациональным
6. найдите значение выражения v9 +4v2. сделать номера ,не было на это теме!
Найдем дискриминант квадратного уравнения:
D = b² - 4ac = 10² - 4·3·7 = 100 - 84 = 16
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = (-10 - √16) / 2* 3 = -14/6 = - 7/3
x2 = (-10 + √16) / 2*3 = -6/6 = -1
-7x² - 4x + 11 = 0
Найдем дискриминант квадратного уравнения:
D = b² - 4ac = (-4)² - 4·(-7)·11 = 16 + 308 = 324
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = (4 - √324) / 2*(-7) = -14/14 = 1
x2 = (4 + √324) / 2*(-7) = 22 / (-14) = -11/7
-23x² - 22x + 1 = 0
Найдем дискриминант квадратного уравнения:
D = b² - 4ac = (-22)² - 4·(-23)·1 = 484 + 92 = 576
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = (22 - √576) / 2*(-23) = -2 / -46 = 1/23
x2 = (22 + √576) * 2*(-23) = 46 / (-46) = -1
3x² - 14x + 16 = 0
Найдем дискриминант квадратного уравнения:
D = b² - 4ac = (-14)² - 4·3·16 = 196 - 192 = 4
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:x
x1 = (14 - √4) / 2*3 = 12/6 = 2
x2 = (14 + √4) / 2*3 = 16/6 = 8/3
1) 3(х - 1) - 2(3 - 7х) = 2(х - 2) 2) 10(1 - 2х) = 5(2х - 3) - 3(11х - 5)
3х - 3 - 6 + 14х = 2х - 4 10 - 20х = 10х - 15 - 33х + 15
3х + 14х - 2х = - 4 + 3 + 6 - 20х - 10х + 33х = - 15 + 15 - 10
15х = 5 3х = - 10
х = 5 : 15 х = - 10 : 3
х = 5/15 = 1/3 х = - 10/3 = - 3 1/3
3) 1,3(х - 0,7) - 0,12(х + 10) - 5х = - 9,75
1,3х - 0,91 - 0,12х - 1,2 - 5х = - 9,75
1,3х - 0,12х - 5х = - 9,75 + 0,91 + 1,2
- 3,82х = - 7,64
х = - 7,64 : (- 3,82)
х = 2
4) 2,5(0,2 + х) - 0,5(х - 0,7) - 0,2х = 0,5
0,5 + 2,5х - 0,5х + 0,35 - 0,2х = 0,5
2,5х - 0,5х - 0,2х = 0,5 - 0,5 - 0,35
1,8х = - 0,35
х = - 0,35 : 1,8
х = - 35/180 = - 7/36