1.Найти производные функции а) f(x)=3x-x^2
б) f(x)= корень из x(x-8)
в) f(x)= 3x-3/8x+1
2.Решите неравенство
f'(x) больше или равно 0, если
f(x)=2x-x^2-x^3/3
3.Решите уравнение
f'(x)=0, если
f(x)=(x-5)^2/x+1
4.Исследуйте функцию и постройте её график
f(x)=x^3-3x^2+2
1/(х-6) - 1/х = 1/36
36х-36(х-6)=х(х-6)
х-6х-216=0
D=900
х=-12 (мин) не подходит, т.к. время не может быть отрицательным.
х=18 (мин) время за которое 1-ый кран заполнит порожнюю ванну.
18-6=12 (мин) время за которое 2-ой кран опорожнит полную ванну.
Объяснение:
Пошаговое изъяснение: Пусть вся ванна 1 (единица), а х минут это время за которое 1-ый кран заполнит ванну, тогда время за которое 2-ой кран освободит ванну, будет х-6 минут. Производительность первого крана на заполнение будет 1/х; производительность второго крана на опорожнение будет 1/(х-6) , а общая производительность на опорожнение ванны 1/36. Составим уравнение:
ответ: Первый кран наполнит пустую ванну за 18 минут; второй кран опорожнит полную ванну за 12 минут.
Пошаговое объяснение: Пусть вся ванна 1 (единица), а х минут это время за которое первый кран наполнит ванну, тогда время за которое второй кран опорожнит ванну, будет х-6 минут. Производительность первого крана на наполнение будет 1/х; производительность второго крана на опорожнение будет 1/(х-6) , а совместная производительность на опорожнение ванны 1/36. Составим уравнение:
1/(х-6) - 1/х = 1/36
36х-36(х-6)=х(х-6)
х²-6х-216=0
D=900
х₁=-12 (мин) не подходит, т.к. время не может быть отрицательным.
х₂=18 (мин) время за которое первый кран наполнит пустую ванну.
18-6=12 (мин) время за которое второй кран опорожнит полную ванну.
Подробнее - на -