‥・Здравствуйте, tima0604! ・‥
• ответ:
Упрощённым выражением данного примера является решение -11+√21. (Альтернативный Вид: ≈ -6,41742.)
• Как и почему?
Для того, чтобы нам проверить правильность нашего ответа, то мы должны делать следующее:
• 1. Упростить корень √12: (√7-2√3)×(√7+3√3).
• 2. Перемножить выражения в скобках, то есть, раскрыть их: 7+3√21-2√21-18.
• 3. Вычислить разность чисел 7 и 18: 7-18=-11 → -11+3√21-2√21.
• 4. Привести подобные члены 3√21 и 2√21: -11+√21.
• Вывод: Таким образом, у нас в ответе получается корень -11+√21, а Альтернативный Вид этого корня является примерно -6,41742.
‥・С уважением, Ваша GraceMiller! :) ・‥
‥・Здравствуйте, tima0604! ・‥
• ответ:
Упрощённым выражением данного примера является решение -11+√21. (Альтернативный Вид: ≈ -6,41742.)
• Как и почему?
Для того, чтобы нам проверить правильность нашего ответа, то мы должны делать следующее:
• 1. Упростить корень √12: (√7-2√3)×(√7+3√3).
• 2. Перемножить выражения в скобках, то есть, раскрыть их: 7+3√21-2√21-18.
• 3. Вычислить разность чисел 7 и 18: 7-18=-11 → -11+3√21-2√21.
• 4. Привести подобные члены 3√21 и 2√21: -11+√21.
• Вывод: Таким образом, у нас в ответе получается корень -11+√21, а Альтернативный Вид этого корня является примерно -6,41742.
‥・С уважением, Ваша GraceMiller! :) ・‥
Нули в точках x1 = -3/2; x2 = 2
При x <= 2 f(x) = (2x+3)(2-x) = 4x + 6 - 2x^2 - 3x = -2x^2 + x + 6
f ' (x) = -4x + 1 = 0; x1 = 1/4; f(1/4) = (1/2+3)(2-1/4) = 7/2*7/4 = 49/8 = 6,125
При x<1/4 f'(x)>0, ф-ция возрастает. При 1/4<x<=2 f'(x)<0, ф-ция убывает.
Это точка максимума.
При x > 2 f(x) = (2x+3)(x-2) = 2x^2 + 3x - 4x - 6 = 2x^2 - x - 6
f ' (x) = 4x - 1 = 0; x2 = 1/4 < 2, поэтому при x > 2 экстремумов нет.
Функция всюду возрастает.
Область значений - (-оо, +оо). В точке x2(2, 0) перелом.