1.От данных функции который чётный? а)3-ctgx
б)2х-tgx
в)sinx+2
г)cos3x-1
2.При каких значении x-а arcsin(2x-1) имеет смысл
3.Считать значение cos(п/2-arcctg√3)выражении
4.Решить tgx+3tgx=4 уравнение
5.Найти тот корень sin(2x+п/4) уравнения,который находится в (п/2;п) области
6.Доказпть,что п/3 -ий период f(x)=cos²3x функции
варианта 2 как можно понимать эти выражения (запись в условии немного запутывает):
1.
2.
то есть роли не играет, потому что выражение имеет вид
сначала прибавляем выражение, а потом его вычитаем, ну а единица тут спокойно прибавляется и она в ответе.
upd. оказывается, что выражение, по всей видимости, такое:
если это так, то в условии, конечно, лучше ставить скобки
p(x)=(2х+1)(4х^2-2х+1)-8х^3=(8х^3-4x^2+2x+4x^2-2x+1)-8x^3=1
То есть при любых значениях х ответ будет всегда 1.
23.18р(х;у)=(ху+3)(2ху-4)-2(ху-7)=2*x^2*y^2-4xy+6xy-12-2xy+14=2*x^2*y^2+2
Разберем по частям 2*x^2*y^2+2
1)
2*x^2*y^2 всегда положителен, так как квадрат числа не может быть отрицательным, положительное число{2}умножаем{x^2}и умножаем на {y^2} = положительное число, всегда положителен
2)
число 2>0, положительное число
3) сумма двух положительных чисел {2*x^2*y^2 и 2} всегда дает нам положительное число