Для нахождения решения корней x2 - 6x = 16 полного квадратного уравнения мы начнем с того, что перенесем 16 в левую часть уравнения:
x2 - 6x - 16 = 0.
Для решения уравнения будем использовать формулы для поиска дискриминанта и корней уравнения через дискриминант.
D = b2 - 4ac = (-6)2 - 4 * 1 * (-16) = 36 + 64 = 100;
Корни уравнения мы вычислим по следующим формулам:
x1 = (-b + √D)/2a = (6 + √100)/2 * 1 = (6 + 10)/2 = 16/2 = 8;
x2 = (-b - √D)/2a = (6 - √100)/2 * 1 = (6 - 10)/2 = -4/2 = -2.
ответ: x = 8; x = -2.
Объяснение:
У переменной а наименьшая степень 2, у b наименьшая 1.
Значит, выносим a^2*b
16a^5b - 8a^4b^3 - 6a^3b^3 + 10a^2b^4 = 2a^2b*(8a^3 - 4a^2b^2 - 3ab^2 + 5b^3)
2) Выносим за скобки (2x - 7)
(2x - 7)*(3a + 5b - (2x - 7)) = (2x - 7)(3a + 5b - 2x + 7)
Общий множитель выносим из-под квадрата, то есть возводим в квадрат.
1) (3x + 6)^2 = (3(x + 2))^2 = 9(x + 2)^2
2) (7x - 14)^2 = 49(x - 2)^2
3) (5m + 30)^2 = 25(m + 6)^2
4) (2a - 4b)^3 = 8(a - 2b)^3 - здесь 2 в куб возвели
Для нахождения решения корней x2 - 6x = 16 полного квадратного уравнения мы начнем с того, что перенесем 16 в левую часть уравнения:
x2 - 6x - 16 = 0.
Для решения уравнения будем использовать формулы для поиска дискриминанта и корней уравнения через дискриминант.
D = b2 - 4ac = (-6)2 - 4 * 1 * (-16) = 36 + 64 = 100;
Корни уравнения мы вычислим по следующим формулам:
x1 = (-b + √D)/2a = (6 + √100)/2 * 1 = (6 + 10)/2 = 16/2 = 8;
x2 = (-b - √D)/2a = (6 - √100)/2 * 1 = (6 - 10)/2 = -4/2 = -2.
ответ: x = 8; x = -2.
Объяснение: