1. ºПобудувати графік лінійного рівняння 3х+2у=5. Користуючись графіком, знайти: 1) значення у, якщо х= -1; 0,15; 2/9; 2) значення х, якщо у=0; 1; 2,5.
ºНе виконуючи побудови, знайти координати точки перетину прямих 2х - 3у=16 і х+2у=1.
АВ - хорда, О - центр окружности, ОН - расстояние от центра до хорды. Расстояние от точки до прямой - это длина перпендикуляра, провененного из этой точки на прямую, значит ОН - высота треугольника АОВ. Тр-ник АОВ равнобедренный, АО = ОВ как радиусы окружности, АВ - основание. В равнобедренном тр-ке высота, проведенная к основанию, является также медианой, значит АН = ВН. Так как ВН - высота, то тр-ник АНО прямоугольный. По теореме пифарора найдем катет АН: АН = √(13² - 5²) = √(169 - 25) = √144 = 12 (см) АВ = 12 * 2 = 24(см) ответ: 24 см
функция задана формулой у=18-2х^2. Не выполняя построения определите
а) координаты точек пересечения графика функции с осями координат
Пересечение в осью Ох: у=0
18-2x²=0
2x²=18
x²=9
x=3 или x=-3
точки пересечения (3;0) или (-3;0)
Пересечение с осью Оу: х=0
18-2*0=18
Точка пересечения (0;18)
б)значение функции если значение аргумента равно 2
18-2*2²=18-2*4=18-8=10
Значение функции y(2)=10
в)значение аргумента, при котором значение функции равно 16
18-2x²=16
2x²=2
x²=1
x=1 или х= -1
г)проходит ли график функции через точку В (-2: 10)
х=-2 у=10
18-2*(-2)²=18-2*4=18-8=10
Да, проходит
2
функция задана формулой у=2х^2-8 . Не выполняя построения определите
а) координаты точек пересечения графика функции с осями координат
пересечение с осью Ох: у=0
2x²-8=0
2x²=8
x²=4
x=2 или х=-2
Точки пересечения (2;0) или (-2;0)
пересечение с осью Оу: х=0
2*0-8= -8
Точка пересечения (0;-8)
б)значение функции если значение аргумента равно 3
у(3)=2*3²-8=2*9-8=18-8=10
в)значение аргумента, при котором значение функции равно -6
2x²-8= -6
2x²=2
x²=1
x=1 или х= -1
г)проходит ли график функции через точку А( -3:10)
х= -3 у=10
2*(-3)²-8=2*9-8=18-8=10
Да, проходит
Расстояние от точки до прямой - это длина перпендикуляра, провененного из этой точки на прямую, значит ОН - высота треугольника АОВ.
Тр-ник АОВ равнобедренный, АО = ОВ как радиусы окружности, АВ - основание. В равнобедренном тр-ке высота, проведенная к основанию, является также медианой, значит АН = ВН.
Так как ВН - высота, то тр-ник АНО прямоугольный. По теореме пифарора найдем катет АН:
АН = √(13² - 5²) = √(169 - 25) = √144 = 12 (см)
АВ = 12 * 2 = 24(см)
ответ: 24 см