Б) f(x)=4-2x f`(x)=(4-2x)`=(4)`-(2x)`=0-2·(x)`=-2·1=-2 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (-2) f`(0,5)=f`(-3)=-2
в) f(x)=3x-2 f`(x)=(3x-2)`=(3х)`-(2)`=3·(x)`-0=3·1=3 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (3) f`(5)=f`(-2)=3
Решаем |y-2x|=x. x>=0 y - 2x = x или y - 2x = -x y = 3x или y = x
Подставляем полученные решения во второе уравнение. y = 3x: |ax - 3x| = 3x После сокращения на x > 0 имеем |a - 3| = 3
y = x: |ax - x| = x |a - 1| = 1
Общее решение двух уравнений - это a = 0.
Проверка: |-y| = y - верно вообще при всех y>=0.
ответ. ни при каком.
Upd. Это можно понять еще и следующим образом. При x = 0 второму уравнению удовлетворяют все y>=0. Но первому уравнению при x = 0 удовлетворяет только y = 0.
f`(x)=(4-2x)`=(4)`-(2x)`=0-2·(x)`=-2·1=-2
Применили правила:
производная суммы( разности) равна сумме( разности) производных
Производная постоянной (C)`=0
Постоянный множитель можно вынести за знак производной
(х)`=1
Производная принимает во всех точках одно и то же значение (-2)
f`(0,5)=f`(-3)=-2
в) f(x)=3x-2
f`(x)=(3x-2)`=(3х)`-(2)`=3·(x)`-0=3·1=3
Применили правила:
производная суммы( разности) равна сумме( разности) производных
Производная постоянной (C)`=0
Постоянный множитель можно вынести за знак производной
(х)`=1
Производная принимает во всех точках одно и то же значение (3)
f`(5)=f`(-2)=3
x>=0
y - 2x = x или y - 2x = -x
y = 3x или y = x
Подставляем полученные решения во второе уравнение.
y = 3x: |ax - 3x| = 3x
После сокращения на x > 0 имеем
|a - 3| = 3
y = x: |ax - x| = x
|a - 1| = 1
Общее решение двух уравнений - это a = 0.
Проверка: |-y| = y - верно вообще при всех y>=0.
ответ. ни при каком.
Upd. Это можно понять еще и следующим образом. При x = 0 второму уравнению удовлетворяют все y>=0. Но первому уравнению при x = 0 удовлетворяет только y = 0.