1)Построить график квадратичной функции и описать свойства у = х2 + 6х + 11
2)найти элементы статистики, то есть найти наибольшее и наименьшее значения, размах, размах разделить на любое число в отличие от 1; составить интервальную таблицу, начертить гистограмму, построить таблицу частот и найти средние значения, дисперсию и сигму.
При измерении размеров березовых листьев получены следующие результаты длины листа (в сантиметрах):
9,7; 8,5; 6; 8,5; 6,2; 8,5; 11.
Проследим, на какую цифру оканчиваются несколько первых степеней числа 1007. Это легко сделать, потому что достаточно последнюю цифру умножать на 7.
Как видим, наблюдается циуличность через каждые 4 степени. Поэтому достаточно степень разделить на 4 и посмотреть, какой будет остаток. Если остаток равен 1, то на конце 7, если 2 - то 9, если 3 - то 3, если 0 - то 1.
Делим 1025 на 4 получаем 256 и 1 в остатке. Следовательно, искомое число оканчивается на 7.
(х +6 -х²)/(х +1)² ≤ 0 ( знаменатель всегда ≥ 0, причём х ≠ -1), значит числитель ≤ 0
х +6 -х² ≤ 0 ( корни 3 и -2)
-∞ -2 -1 3 +∞
- + + - это знаки х +6 -х²
ответ: х∈ (-∞; -2]∪[3; +∞)
4) (3х - х²) (х² + 2х - 8) > 0
метод интервалов.
ищем нули числителя и знаменателя:
3х - х² = 0 х² +2х - 8 = 0
корни 0 и 3 корни -4 и 2
-∞ -4 0 2 3 +∞
- - + + - это знаки 3х - х²
+ - - + + это знаки х² +2х - 8
это решение неравенства