В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
maklakovatattu
maklakovatattu
29.12.2020 18:57 •  Алгебра

1.Построить графики функций І
1).y= 3х - 6
2 y= 4x
3) y= -3
2. Написать функцию, параллельную графику функции y = 6x - 4​

Показать ответ
Ответ:
jasmine9
jasmine9
31.03.2023 14:39

y = 7x - 6sinx + 8

y' = 7 - 6cosx

7 - 6cosx = 0

6cosx = 7

cosx = 7/6, 7/6 больше 1, поэтому корней нет

Раз критических точек нет, то подставляем только границы промежутка:

y(-π/2) = 7*(-π/2) - 6sin(-π/2) + 8 = -7π/2 + 6 + 8 = -7π/2 + 14 = (28-7π)/2

y(0) = 7*0 + sin0 + 8 = 8

Сравним 8 и (28-7π)/2, чтобы определить наибольшее значение:

8 - (28-7π)/2 = (16 - 28 + 7π)/2 = (7π - 12)/2 ≈ (21 - 12)/2 = 9/2 > 0

8 - (28-7π)/2 > 0

8 > (28-7π)/2

ответ: наибольшее значение функции y = 7x - 6sinx + 8 на отрезке [-π/2; 0] равно 8

0,0(0 оценок)
Ответ:
WolfHunter1
WolfHunter1
09.02.2020 09:18

500 различных результатов можно получить

Объяснение:

Покажем, что в любой расстановке скобок получаем чётные числа.

В зависимости расстановки скобок каждая 1 прибавляет к результату +1 или –1. То есть, если при некоторой расстановке скобок прибавляется +1 в количестве х, тогда прибавляется –1 в количестве (500–х). Отсюда, результат х–(500–х)=2•х–500 чётное число!

Покажем, что получаются чётные числа от –500 по 498, то есть всего:  

(498–(–500)):2+1 = 998:2+1 = 499+1 = 500 чисел.

1) (–1–1–1–1…) = –500 (так как количество 1 всего 500)

2) в конец добавим пару скобок

–1–1–1–1…–(1–1)=–498

3) перед последней парой скобок добавим пару скобок

–1–1–1–1…–(1–1)–(1–1)=–496

250) –1–1–(1–1)…–(1–1)–(1–1)=–2

Таким образом можем получить все чётные отрицательные числа от –500 по –2. Для следующей расстановки скобок результатом будет 0:

–(1–1)–(1–1)–(1–1)–…– (1–1)=0+0+…+0=0 (250 пар скобок).

Покажем, что можем получить все чётные положительные числа от 2 по 498. Для этого добавим в выражение для 0 после знака минус открывающийся скобку и её пару в конец выражения и следующим образом постепенно удаляем внутренние скобки:  

1) –((1–1)–(1–1)–…–(1–1)–1–1)=2

2) –((1–1)–(1–1)–…–(1–1)–1–1–1–1)=4

249) –(1–1–1–1–…–1–1–1–1–1–1)=498.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота