1. построй график функции и опиши ее свойства y= (x-2)^2 + 1 а. найдите по графику значение функции, если значение аргументов равны 3;0 б. найдите значение аргумента, если значение функции равно 5
нужно построить в одной системе координат графики функций у = х2 и у = 2х + 3 . Они пересекаются в двух точках А(- 1; 1) и В(3; 9). Корнями уравнения служат абсциссы точек А и В, значит, х1 = -1, х2 = 3.
я файл вложила правда рисунок не очень ну ты построй и поймешь х²=2х+3 х²-2х-3 Построим график функции у = х2 - 2х - 3 1) Имеем а = 1, b = -2, х=-b/2a=1, у = f(1) = I2 - 2 - 3 = - 4. Значит, вершиной параболы служит точка (1;- 4), а осью параболы — прямая х = 1. 2) Возьмем на оси х две точки, симметричные относительно оси параболы: точки х = -1 и х =3. Имеем /(-1) = /(3) = 0; отметим в координатной плоскости точки (-1; 0) и (3; 0). 3) Через точки (-1; 0), (1; -4), (3; 0) проводим параболу (рис.1).Корнями уравнения х2 - 2х - 3 = 0 являются абсциссы точек пересечения параболы с осью х; находим x1= -1, x2 = 3
рисовать не буду нет времени
его можно решить Решите графически уравнение : х²=2х+3">
Чтобы решить надо координаты подставить в данные функции и где будет верное равенство там и находится точка. Например: у = х^2 , а так как точка имеет координаты (х;у), то А(2;4), D (-4;16) принадлежит так как 4 = 2^2 , 16 =(-4)^2 ,а для функции у = - х^2 принадлежат точки B (-7;-49), C(5;-25) так как -49=-(-7)^2, -25 = -5^2 3) чтобы найти точки пересечения надо функции между собой приравнять: у=-х^2 y=-4 -x^2=-4 x^2=4 x1=2 x2=-2 точки пересечения А(2;-4) и В(-2;-4) 4) здесь надо построить параболу у =x^2 ветви направлены вверх и прямую линию у=2х+3 проходящую через координаты (0;3) и (-3/2;0) 2) здесь тоже легко у=х^2 - это парабола отмечаешь отрезок [-3,1] на оси Х и проводишь перпендикуляр от этих точек до пересечения с графиком и должен получить у наибольшее(-3)=9, у наименьшее(1)=1 , а с -бесконечностью у наибольшее=+бесконечности
нужно построить в одной системе координат графики функций у = х2 и
у = 2х + 3 . Они пересекаются в двух точках А(- 1; 1) и В(3; 9). Корнями уравнения служат абсциссы точек А и В, значит, х1 = -1, х2 = 3.
я файл вложила правда рисунок не очень ну ты построй и поймешь х²=2х+3 х²-2х-3 Построим график функции у = х2 - 2х - 3
1) Имеем а = 1, b = -2, х=-b/2a=1, у = f(1) = I2 - 2 - 3 = - 4. Значит, вершиной параболы служит точка (1;- 4), а осью параболы — прямая х = 1.
2) Возьмем на оси х две точки, симметричные относительно оси параболы: точки х = -1 и х =3. Имеем /(-1) = /(3) = 0; отметим в координатной плоскости точки (-1; 0) и (3; 0).
3) Через точки (-1; 0), (1; -4), (3; 0) проводим параболу (рис.1).Корнями уравнения
х2 - 2х - 3 = 0 являются абсциссы точек пересечения параболы с осью х; находим
x1= -1,
x2 = 3
рисовать не буду нет времени
его можно решить Решите графически уравнение : х²=2х+3">
Например: у = х^2 , а так как точка имеет координаты (х;у), то А(2;4), D (-4;16) принадлежит так как 4 = 2^2 , 16 =(-4)^2 ,а для функции у = - х^2 принадлежат точки B (-7;-49), C(5;-25) так как -49=-(-7)^2, -25 = -5^2
3) чтобы найти точки пересечения надо функции между собой приравнять:
у=-х^2 y=-4
-x^2=-4
x^2=4
x1=2
x2=-2
точки пересечения А(2;-4) и В(-2;-4)
4) здесь надо построить параболу у =x^2 ветви направлены вверх и прямую линию у=2х+3 проходящую через координаты (0;3) и (-3/2;0)
2) здесь тоже легко у=х^2 - это парабола отмечаешь отрезок [-3,1] на оси Х и проводишь перпендикуляр от этих точек до пересечения с графиком и должен получить у наибольшее(-3)=9, у наименьшее(1)=1 , а с -бесконечностью у наибольшее=+бесконечности