1.Построй график функции y=-x²-8x-15. Найдите с графика: а) значение y при x=-1,5; б) значение x, при которой y=-2 в) нули функции; промежутки, в которых y>0 и в которых y<0; г) промежуток, в котором функция убывает.
2. Найдите наибольшее значение функции y=-x²+6x-4
3. Найдите область значений функции y=x²-4x-7, где x принадлежит [-1;5]
4. Не выполняя построения, определите, пересекаются ли порабола y=1/5x² и прямая y=10,8-3x. Если точки пересечения существуют, то найдите их координаты.
1.
6sin^2x-3sinx*cosx-cos^2x=sin^2x+cos^2x
5sin^2x-3sinx*cosx-2cos^2x=0 /:cos^2x≠0
5tg^2x-3tgx-2=0
замена tgx=t
5t^2-3t-2=0
t=1
t=-2/5
обратная замена:
1) tgx=1
x=pi/4+pik, k∈Z
2) tgx=-2/5
x=-arctg(2/5)+pik, k∈Z
pi/4+pik, k∈Z
-arctg(2/5)+pik, k∈Z
2.
5sin^2x+3sinx*cosx-2cos^2x=3sin^2x+3cos^2x
2sin^2x+3sinx*cosx-5cos^2x=0 /:cos^2x≠0
2tg^2x+3tgx-5=0
замена tgx=t
2t^2+3t-5=0
t=1
t=-5/2
обратная замена:
1) tgx=1
x=pi/4+pik, k∈Z
2) tgx=-5/2
x=-arctg(5/2)+pik, k∈Z
pi/4+pik, k∈Z
-arctg(5/2)+pik, k∈Z
Объяснение:
а) х²-2x-15=0
(x²-2x+1)-1-15=0
(x-1)²-4²=0
(x-1-4)(x-1+4)=0
(x-5)(x+3)=0
x₁=5;x₂=-3
ответ:{-3;5}
б)x²+4x+3=0
(x²+4x+4)-4+3=0
(x+2)²-1²=0
(x+2-1)(x+2+1)=0
(x+1)(x+3)=0
x₁=-1;x₂=-3
ответ: {-3;-1}
в)2x²-16-18=0
2x²-34=0
2(x²-17)=0
x²=17
x₁=-√17; x₂=√17
ответ : {-√17;√17}
если в условии ошибка (пропущена переменная х)
2x²-16x-18=0
2(x²-8x-9)=0
x²-8x-9=0
(x²-8x+16)-16-9=0
(x-4)²-5²=0
(x-4-5)(x-4+5)=0
(x-9)(x+1)=0
x₁=9; x₂=-1
ответ: {-1;9}
г)3x²+18x+15=0
3(x²+6x+5)=0
x²+6x+5=0
(x²+6x+9)-9+5=0
(x+3)²-2²=0
(x+3-2)(x+3+2)=0
(x+1)(x+5)=0
x₁=-1; x₂=-5
ответ: {-5;-1}