•1. Постройте график функции у = х2 – 4х – 5. Найди- те с графика: а) значение у при х = 0,5; б) значения хпри которых у = 3; в) нули функции; промежутки, в которых у > Оив ко- торых у < 0; г) промежуток, в котором функция возрастает.
1-вся работа х-производительность мастера в день у-производительность ученика в день Система уравнений Первое 0,5/х=0,5/(х+у)+2 0,5/(х+у)-0,5/х+2=0 разделим на 0,5 1/(х+у)-1/х+4=0 умножим на х(х+у) х-(х+у)+4х(х+у)=0 х-х-у+4х²+4ху=0 -у+4х²+4ху=0 у-4ху=4х² у(1-4х)=4х² у=4х²/(1-4х)
Второе 1/у-1/х=5 умножим на ху х-у=5ху у+5ху=х у(1+5х)=х у=х/(1+5х)
Область определения функции. ОДЗ:Точки, в которых функция точно неопределена: x=0
Точка пересечения графика функции с осью координат Y:График пересекает ось Y, когда x равняется 0: подставляем x=0 в 6/x. Результат: y=zoo. Точка: (0, zoo)Точки пересечения графика функции с осью координат X:График функции пересекает ось X при y=0, значит нам надо решить уравнение:6/x = 0 Решаем это уравнение здесь и его корни будут точками пересечения с X: Нету корней, значит график функции не пересекает ось X Экстремумы функции:Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:y'=-6/x^2=0 Решаем это уравнение и его корни будут экстремумами: нет решения - нет экстремумов. Точки перегибов графика функции: Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции, + нужно подсчитать пределы y'' при аргументе, стремящемся к точкам неопределенности функции:y''=12/x^3=0lim y'' при x->+0 lim y'' при x->-0 (если эти пределы не равны, то точка x=0 - точка перегиба) Решаем это уравнение и его корни будут точками, где у графика перегибы:x=0. Точка: (0, ±oo)Интервалы выпуклости, вогнутости:Найдем интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках изгибов:Вертикальные асимптотыЕсть: x=0Горизонтальные асимптоты графика функции:Горизонтальную асимптоту найдем с предела данной функции при x->+oo и x->-oo. Соотвествующие пределы находим :lim 6/x, x->+oo = 0, значит уравнение горизонтальной асимптоты справа: y=0lim 6/x, x->-oo = 0, значит уравнение горизонтальной асимптоты слева: y=0 Наклонные асимптоты графика функции:Наклонную асимптоту можно найти, подсчитав предел данной функции, деленной на x при x->+oo и x->-oo. Находим пределы:lim 6/x/x, x->+oo = 0, значит совпадает с горизонтальной асимптотой слеваlim 6/x/x, x->-oo = 0, значит совпадает с горизонтальной асимптотой справа Четность и нечетность функции: Проверим функци четна или нечетна с соотношений f(x)=f(-x) и f(x)=-f(x). Итак, проверяем:6/x = -6/x - Нет6/x = -(-6/x) - Дазначит, функция является нечётной
х-производительность мастера в день
у-производительность ученика в день
Система уравнений
Первое
0,5/х=0,5/(х+у)+2
0,5/(х+у)-0,5/х+2=0 разделим на 0,5
1/(х+у)-1/х+4=0 умножим на х(х+у)
х-(х+у)+4х(х+у)=0
х-х-у+4х²+4ху=0
-у+4х²+4ху=0
у-4ху=4х²
у(1-4х)=4х²
у=4х²/(1-4х)
Второе
1/у-1/х=5 умножим на ху
х-у=5ху
у+5ху=х
у(1+5х)=х
у=х/(1+5х)
4х²/(1-4х)=х/(1+5х) делим на х
4х/(1-4х)=1/(1+5х)
1-4х=4х(1+5х)
1-4х=4х+20х²
20х²+8х-1=0
D= 8² - 4·20·(-1) = 64 + 80 = 144
x1 = (-8 - √144)/(2*20) = (-8 - 12)/40 = -20/40 = -0.5не подходит
x2 = (-8 + √144)/(2*20) = (-8 +12)/40 = 4/40 =0,1
1:0,1=10 дней-понадобится мастеру
10+5=15 дней-понадобится ученику
Область определения функции. ОДЗ:Точки, в которых функция точно неопределена: x=0
Точка пересечения графика функции с осью координат Y:График пересекает ось Y, когда x равняется 0: подставляем x=0 в 6/x.Результат: y=zoo. Точка: (0, zoo)Точки пересечения графика функции с осью координат X:График функции пересекает ось X при y=0, значит нам надо решить уравнение:6/x = 0 Решаем это уравнение здесь и его корни будут точками пересечения с X:
Нету корней, значит график функции не пересекает ось X
Экстремумы функции:Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:y'=-6/x^2=0
Решаем это уравнение и его корни будут экстремумами: нет решения - нет экстремумов.
Точки перегибов графика функции: Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции,
+ нужно подсчитать пределы y'' при аргументе, стремящемся к точкам неопределенности функции:y''=12/x^3=0lim y'' при x->+0
lim y'' при x->-0
(если эти пределы не равны, то точка x=0 - точка перегиба)
Решаем это уравнение и его корни будут точками, где у графика перегибы:x=0. Точка: (0, ±oo)Интервалы выпуклости, вогнутости:Найдем интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках изгибов:Вертикальные асимптотыЕсть: x=0Горизонтальные асимптоты графика функции:Горизонтальную асимптоту найдем с предела данной функции при x->+oo и x->-oo. Соотвествующие пределы находим :lim 6/x, x->+oo = 0, значит уравнение горизонтальной асимптоты справа: y=0lim 6/x, x->-oo = 0, значит уравнение горизонтальной асимптоты слева: y=0 Наклонные асимптоты графика функции:Наклонную асимптоту можно найти, подсчитав предел данной функции, деленной на x при x->+oo и x->-oo. Находим пределы:lim 6/x/x, x->+oo = 0, значит совпадает с горизонтальной асимптотой слеваlim 6/x/x, x->-oo = 0, значит совпадает с горизонтальной асимптотой справа
Четность и нечетность функции: Проверим функци четна или нечетна с соотношений f(x)=f(-x) и f(x)=-f(x). Итак, проверяем:6/x = -6/x - Нет6/x = -(-6/x) - Дазначит, функция является нечётной