Находим производную. У'=4x^3-4x Приравниваем её к нулю 4x^3-4x=0, 4x(x^2-1)=0, имеем три точки: x=0, x=-1, x=1 Исследуем знак производной на интервалах (-∞;-1), (-1,0), (0,+1), (1,+∞) в интервале (-∞;-1)-производная отрицательна, функция убывает; в интервале (-1,0) -производная положительна, на этом интервале функция возрастает, в интервале (0,+1)-производная отрицательна, значит убывает; в интервале (1,+∞)-производная положительна, значит, здесь функция возрастает Далее, при переходе через точки -1и1-функция меняет знак с минуса на плюс, значит в этих точках минимум, при переходе через точку х=0 меняется знак с плюса на минус, значит здесь максимум. Подставим эти точки в функцию f(-1)=-4, (-1,-4)-точка минимума, f(1)=-4; (1,-4)-точка минимума, f(0)=-3 ; (0,-3)-точка максимума
У'=4x^3-4x
Приравниваем её к нулю 4x^3-4x=0, 4x(x^2-1)=0, имеем три точки: x=0, x=-1, x=1 Исследуем знак производной на интервалах (-∞;-1), (-1,0), (0,+1), (1,+∞)
в интервале (-∞;-1)-производная отрицательна, функция убывает; в интервале (-1,0) -производная положительна, на этом интервале функция возрастает, в интервале (0,+1)-производная отрицательна, значит убывает; в интервале (1,+∞)-производная положительна, значит, здесь функция возрастает
Далее, при переходе через точки -1и1-функция меняет знак с минуса на плюс, значит в этих точках минимум, при переходе через точку х=0 меняется знак с плюса на минус, значит здесь максимум. Подставим эти точки в функцию f(-1)=-4, (-1,-4)-точка минимума, f(1)=-4; (1,-4)-точка минимума, f(0)=-3 ; (0,-3)-точка максимума
D=b^2-4*a*c= (-18)^2 -4*1*(100-m)=324-400+4*m=4*m-76>=0
4*m>=76
m>=76:4
m>=19 (!с=m)
Таким образом при с>=19 данное уравнение имеет корни.
ответ: при с>=19.