Направление: направлено вниз
Вершина:
(
0
,
4
)
Фокус:
15
.
Ось симметрии:
x
=
Направляющая:
y
17
Выберем несколько значений
и подставим их в уравнение, чтобы найти соответствующие значения
. Значения
должны выбираться близко к вершине.
Нажмите, чтобы увидеть больше шагов...
−
2
1
3
Построим график параболы, используя ее свойства и выбранные точки.
Объяснение:
1) ac2-ad+c3-cd-bc2+bd= = (ac2 – ad) + (c3 –
bc2) + (bd – cd) = a·(c2 – d) + c2·(c – b) + d·(b – c) = a·(c2 – d) +
c2·(c – b) – d·(c – b) = a·(c2 – d) + c2·(c – b) – d·(c – b) = a·(c2 –
d) + (c – b)·(c2 – d) = (c2 – d)·(a + c – b)
2) mx2+my2-nx2-ny2+n-m= x2 ( m - n ) + y2 ( m - n ) - ( m - n ) = ( m-n ) (x2 + y2 - 1 )
3) am2+cm2-an+an2-cn+cn2= m2 (a + c ) + n2 ( a + c ) - n ( a + c ) = ( a+ c) ( m2 + n2 - n)
4) xy2-ny2-mx+mn+m2x-m2n= y2 ( x - n ) + m2 ( x - n) - m ( x - n ) = ( x-n) ( y2 + m2 - m )
5) a2b+a+ab2+b+2ab+2=ab ( a + b + 2 ) + ( a+ b+ 2 ) = 2 ( a+ b + 2 )
6) x2-xy+x-xy2+y3-y2= x ( x – y + 1) – y 2 ( x – y + 1)=( x – y + 1)( x – y 2 ).
Направление: направлено вниз
Вершина:
(
0
,
4
)
Фокус:
(
0
,
15
4
)
.
Ось симметрии:
x
=
0
Направляющая:
y
=
17
4
Выберем несколько значений
x
и подставим их в уравнение, чтобы найти соответствующие значения
y
. Значения
x
должны выбираться близко к вершине.
Нажмите, чтобы увидеть больше шагов...
x
y
−
2
0
−
1
3
0
4
1
3
2
0
Построим график параболы, используя ее свойства и выбранные точки.
Направление: направлено вниз
Вершина:
(
0
,
4
)
Фокус:
(
0
,
15
4
)
.
Ось симметрии:
x
=
0
Направляющая:
y
=
17
4
x
y
−
2
0
−
1
3
0
4
1
3
2
0
Объяснение:
1) ac2-ad+c3-cd-bc2+bd= = (ac2 – ad) + (c3 –
bc2) + (bd – cd) = a·(c2 – d) + c2·(c – b) + d·(b – c) = a·(c2 – d) +
c2·(c – b) – d·(c – b) = a·(c2 – d) + c2·(c – b) – d·(c – b) = a·(c2 –
d) + (c – b)·(c2 – d) = (c2 – d)·(a + c – b)
2) mx2+my2-nx2-ny2+n-m= x2 ( m - n ) + y2 ( m - n ) - ( m - n ) = ( m-n ) (x2 + y2 - 1 )
3) am2+cm2-an+an2-cn+cn2= m2 (a + c ) + n2 ( a + c ) - n ( a + c ) = ( a+ c) ( m2 + n2 - n)
4) xy2-ny2-mx+mn+m2x-m2n= y2 ( x - n ) + m2 ( x - n) - m ( x - n ) = ( x-n) ( y2 + m2 - m )
5) a2b+a+ab2+b+2ab+2=ab ( a + b + 2 ) + ( a+ b+ 2 ) = 2 ( a+ b + 2 )
6) x2-xy+x-xy2+y3-y2= x ( x – y + 1) – y 2 ( x – y + 1)=( x – y + 1)( x – y 2 ).