№ 1. Приближенное значение числа 5/6 равно 0,56. Найти абсолютную погрешность приближения.
№ 2.
Округлить число 2,45 до десятых и найти абсолютную погрешность округления.
№ 3.
Записать в стандартном виде число: 1) 3056,4; 2) 0,00027.
№ 4.
Представить в виде десятичной дроби с точностью до 0,1 число: а) 3/11 б) 3 3/8
№ 5.
Округлите число 5,12 до единиц и найдите относительную погрешность приближения.
Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.
Путешествие катера из города А в город В:
(х+21)m=72
(x-21)n=72
m+n=y Здесь: m-время пути катера из города А в город В, а n-время пути катера обратно, тогда:
m=y-n
(х+21)(y-n)=72
(x-21)n=72
Время пути канистры:
х*у=21
Получаем систему уравнений:
(х+21)(y-n)=72
(x-21)n=72
х*у=21
x*y-x*n+21*y-21*n=72
x*n-21*n=72
х*у=21
21-x*n+21*y-21*n=72
x*n-21*n=72
х*у=21
21-x*n+21*y-21*n=72
n(x-21)=72
х*у=21
21-21n+72-21n+21y=72
n(21/y - 21)=72
-42n+21y=-21 :21
n=72/(21/y - 21)
-2n+y=-1
n=72/(21/y - 21)
y=2n-1
n*(21/(2n-1) - 21)=72
n*(21-42n+21)=72(2n-1)
-42n²+42n-144n+72=0
-42n²-102n+72=0
-21n²-51n+36=2601+12096=5625
√5625=75
n1=(51+75)/-42=-3 <0 - ответом быть не может (скорость не может быть отрицательной)
n2=(51-75)/-42=24/42=12/21
y=2n-1=2*12/21 - 1=24/21 - 1=8/7 - 1=1 1/7 - 1=1/7 км/ч