Запишем многочлен в виде P(x)=a*x⁴+b*x³+c*x²+d*x+e. Из равенства P(1)=P(-1) следует равенство a+b+c+d+e=a-b+c-d+e, или b+d=-(b+d). Но это возможно только при b+d=0, откуда d=-b. Поэтому многочлен приобретает вид P(x)=a*x⁴+b*x³+c*x²-b*x+e. Из равенства P(2)=P(-2) следует равенство 16*a+8*b+4*c-2*b+e=16*a-8*b+4*c+2*b+e, или 16*a+6*b+4*c+e=16*a-6*b+4*c+e, или 6*b=-6*b. Но это возможно только при b=0, а тогда и d=-b=0. Теперь многочлен P(x) приобретает вид P(x)=a*x⁴+c*x²+e. Подставляя в него вместо x -x, получаем P(-x)=a*(-x)⁴+c*(-x)²+e=a*x⁴+c*x²+e=P(x). Утверждение доказано.
cos2x=cosx-1 так по формуле cos2x=cos²x-sin²x а 1=cos²x+sin²x теперь подставляем эти формулы вместо cos2x cos²x-sin²x-cosx+(cos²x+sin²x) таким образом мы вместо sin²x=1-cos²x cos²x-(1-cos²x)-cosx+(cos²x+(1-cos²x)) открываем скобки cos²x-1+cos²x-cosx+cos²x+1-cos²x 2cos²x-cosx=0 ⇒ cosx(2cosx-1)=0 1) cosx=0 x=2pk 2) 2cosx-1=0 ⇒ 2cosx=1 ⇒cosx=1|2⇒x=P|3+2Pk
II 2sin²x-5=-5cosx ⇒ 2(1-cos²x)-5 +5cosx=0 ⇒2-2cos²x-5+5cosx ⇒ -2cos²x-3+5cosx=0 \-1 ⇒ 2cos²x+3-5cosx=0 ⇒ 2cosx-5cosx+3=0 ⇒ cosx=a теперь вместо кос вставим а и решаем дискриминант 2a²-5a+3=0 D=∨25-2*3*4=1 X1=(5-1)|4=1 X2=(5+1)|4= 3|2 КОРНИ НАЙДЕНЫ А ТЕПЕРЬ ПОДСТАВЛЯЕМ COSX 1) COSX=1 X=2Pk 2) COSX=3|2 X=+-arccos3|2+2Pk ,
ответ: утверждение доказано.
Объяснение:
Запишем многочлен в виде P(x)=a*x⁴+b*x³+c*x²+d*x+e. Из равенства P(1)=P(-1) следует равенство a+b+c+d+e=a-b+c-d+e, или b+d=-(b+d). Но это возможно только при b+d=0, откуда d=-b. Поэтому многочлен приобретает вид P(x)=a*x⁴+b*x³+c*x²-b*x+e. Из равенства P(2)=P(-2) следует равенство 16*a+8*b+4*c-2*b+e=16*a-8*b+4*c+2*b+e, или 16*a+6*b+4*c+e=16*a-6*b+4*c+e, или 6*b=-6*b. Но это возможно только при b=0, а тогда и d=-b=0. Теперь многочлен P(x) приобретает вид P(x)=a*x⁴+c*x²+e. Подставляя в него вместо x -x, получаем P(-x)=a*(-x)⁴+c*(-x)²+e=a*x⁴+c*x²+e=P(x). Утверждение доказано.
cos²x-sin²x-cosx+(cos²x+sin²x) таким образом мы вместо sin²x=1-cos²x
cos²x-(1-cos²x)-cosx+(cos²x+(1-cos²x)) открываем скобки
cos²x-1+cos²x-cosx+cos²x+1-cos²x
2cos²x-cosx=0 ⇒ cosx(2cosx-1)=0
1) cosx=0 x=2pk
2) 2cosx-1=0 ⇒ 2cosx=1 ⇒cosx=1|2⇒x=P|3+2Pk
II 2sin²x-5=-5cosx ⇒ 2(1-cos²x)-5 +5cosx=0 ⇒2-2cos²x-5+5cosx ⇒
-2cos²x-3+5cosx=0 \-1 ⇒ 2cos²x+3-5cosx=0 ⇒ 2cosx-5cosx+3=0 ⇒ cosx=a теперь вместо кос вставим а и решаем дискриминант
2a²-5a+3=0 D=∨25-2*3*4=1 X1=(5-1)|4=1 X2=(5+1)|4= 3|2
КОРНИ НАЙДЕНЫ А ТЕПЕРЬ ПОДСТАВЛЯЕМ COSX
1) COSX=1 X=2Pk
2) COSX=3|2 X=+-arccos3|2+2Pk ,