1. Приведите пример уравнения с двумя переменными первой, второй, третьей и четвертой степени. 2. Приведите пример линейного и нелинейного уравнения с двумя переменными
3. Что общего и в чем различие линейного и нелинейного уравнения с двумя переменными?
4. Сколько решений может иметь уравнение с двумя переменными?
5. Приведите пример уравнения, графиком которого является: парабола; гипербола; прямая; окружность.
Для числа 18 ответ: да, можно.
Я рассуждал так:
если меняется только одна цифра, значит, меняется только один разряд числа: единицы, десятки, сотни и т.д.
• Изменяя только единицы, деление на 18 снова не получится. Потому что от одного числа, которое делится на 18, до другого должна быть разница хотя бы в эти самые 18.
• Изменяя десятки, мы делаем предположение, что какое-либо круглое двузначное число делится на 18, и это так:
90 : 18 = 5.
Таким образом, если найдётся число, у которого в разряде десятков стоит 0, и оно делится на 18, достаточно будет заменить 0 на 9, чтобы получить новое число, делящееся на 18.
Пример: 108 и 198.
Для числа 19 ответ: нет, нельзя.
Рассуждения аналогичные, только в десятках умножение 19 ни на какое число не даст круглого двузначного числа. То же самое и с сотнями, и с тысячами и т.п., ведь из девятки на конце может получиться нуль только умножением на 10, или кратное ему, а это нам не подходит, т.к. числа 190 и подобные ему будут изменять не один разряд числа, а несколько. Так что только одну цифру изменить никак не получится.
32 см
Объяснение:
Пусть х см - ширина прямоугольника, тогда
(х+4) см - длина прямоугольника
(х(х+4)) кв.см -площадь прямоугольника
Т.к. по условиям задачи площадь равна 60 кв.см , составим и решим уравнение.
х(х+4)=60
х^2+4х=60
х^2+4х-60=0
а=1 b=4 c=-60
D=b^2-4ac=4^2-4*1*(-60)=16+240=256
x=(-b+корень D)/2а=(-4+корень 256)/2*1=(-4+16)/2=12/2=6
x=(-b-корень D)/2а=(-4-корень 256)/2*1=(-4-16)/2=-20/2=-10
-10 - значения стороны не может быть отрицательным
6 см-ширина прямоугольника
1) Находим периметр периметр по формуле 2*(a+b)=2*(6+(6+4))=32 см
n^2 - это число во второй степени