В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
myatlick
myatlick
03.06.2023 12:05 •  Алгебра

1)привести 5 различных примеров:уравнений,задающих линейную функцию.Выписать коэффиценты k и b,и записать свойства. 2)привести 3 примера уравнений,не задающих линейную функцию от ​

Показать ответ
Ответ:
olgalubnina201
olgalubnina201
22.03.2022 08:45
1) Сумма бесконечной убывающей геометрической прогрессии
S = b1/(1 - q)
У нас b1 = 8, q = 0,5, S = 8/(1 - 0,5) = 16
2) Арифметическая прогрессия
a(n) = a1 + d*(n - 1)
У нас a1 = 3, d = 4, n = 10, a(10) = 3 + 4*9 = 3 + 36 = 39
3) b1 = 9, q = -1/3, S = 9/(1 - 1/3) = 9/(2/3) = 9*3/2 = 13,5
4) Сумма арифметической прогрессии
S = (a1 + a(n))*n/2
a1 = 2, n = 102-2+1 = 101, a(101) = 102
S = (2 + 102)*101/2 = 52*101 = 5252
5) a1 = -3, d = -3, n = 25, a(25) = -3 - 3*24 = -3 - 72 = -75
6) a1 = 10, d = -2, n = 10, a(10) = 10 - 2*9 = 10 - 18 = -8
S(10) = (10 - 8)*10/2 = 2*10/2 = 10
0,0(0 оценок)
Ответ:
Как решать системы неравенств:
По сути, решением неравенства является некоторое множество значений над R (в школьном случае).
Решение системы двух неравенств есть пересечение решений двух неравенств т.е. двух этих множеств. Отсюда вытекает технология решения таких систем:
1) Находим решение одного из неравенств отдельно.
2) Находим решение второго неравенства.
3) Пересекаем решения.
Примерчик:
Дана система
\left \{ {{x+a\ \textless \ c} \atop {x-b\ \textgreater \ d}} \right.
1) Решаем второе неравенство (оно удобнее)
x-b\ \textgreater \ d \\ x\ \textgreater \ b+d
Т.е. это множество (b+d;+inf).
2) Решаем первое неравенство.
x+a\ \textless \ c \\ x\ \textless \ c-a
Это множество (-inf;c-a).
Пересекаем их. Тут на самом деле зависит от значений a,b,c,d - но по сути:
1) Если c-a>b+d тогда решение системы (b+d;c-a)
2) Если c-a<b+d тогда система не имеет решения над R.
3) Если c-a=b+d: так как неравенство строгое, то снова - решений нет. Если бы было нестрогое - решением бы было c-a ну или b+d - все равно.
Теперь ваше задание (практика).
\left \{ {{x^2-4x+4 \leq 0} \atop {-5x-10 \leq 0}} \right.
Решаем второе неравенство.
1) -5x-10 \leq 0 \\ -5x \leq 10 \\ x \geq -2
[-2;+inf)
2) Теперь первое.
x^2-4x+4 \leq 0 \\ (x-2)^2 \leq 0
Хитрое неравенство. Квадрат всегда больше нуля, зато может быть равен:
(x-2)^2=0 \\ x=2
Единственное значение, таким образом.
Пересекаем.
Получаем как раз x=2.
Это и ответ.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота