1) Расположить в порядке возрастания : 20; 21; 2-1; 22; 23; 2-3; 2-2.
2) Сравнить с нулем значение степени:8-3; 0,6-4; (-6,2)-6; ( --2.5)-5.
3) Вычислить:а) 0,40 + 0,1-3=
Б) -4∙10-4 =
В) 2-2 + 3-1 =
4) Представить в виде дроби ( избавится от отрицательной степени) : ав-1 ; 3(ав)-2; 3а2в-3; а-2в-3.
ответ:Пусть х-скорость катера в стоячей воде,
тогда скорость катера по течению равна х+2 км/ч,
а скорость катера против течения равна х-2 км/ч.
На путь по течению катер затратил 40/(х+2) часа,
а на путь против течения 6/(х-2) часа.
По условию на весь путь затрачено 3 часа.
Составим уравнение:
40/(х+2) + 6/(х-2) =3|*(x+2)(x-2)
40(x-2)+6(x+2)=3(x^2-4)
40x-80+6x+12=3x^2-12
46x-68-3x^2+12=0|*(-1)
3x^2-46x+56=0
D=2116-672=1444
x1=(46+38):6=14 (км/ч)
х2=(46-38):6=1 1/3 (км/ч) - проверкой устанавливаем, что этот корень не подходит 1 1/3-2<0
ответ: скорость катера в стоячей воде равна 14 км/ч
1.
a)
x² + 4x + 10 ≥ 0
Рассмотрим функцию у = x² + 4x + 10.
Функция квадратичная, график - парабола, ветви направлены вверх.
Нули функции:
x² + 4x + 10 = 0
D = 16 - 40 = - 24 < 0
нулей нет, значит график не пересекает ось Ох.
Схематически график изображен на рис. 1.
у > 0 при x ∈ (- ∞; + ∞)
ответ: 2) Решением неравенства является вся числовая прямая.
b)
- x² + 10x - 25 > 0 | · (- 1)
x² - 10x + 25 < 0
Рассмотрим функцию у = x² - 10x + 25.
Функция квадратичная, график - парабола, ветви направлены вверх.
Нули функции:
x² - 10x + 25 = 0
(x - 5)² = 0
x = 5
Схематически график изображен на рис. 2.
у < 0 при x ∈ {∅}
ответ: 1) Неравенство не имеет решений.
c)
x² + 3x + 2 ≤ 0
Рассмотрим функцию у = x² + 3x + 2.
Функция квадратичная, график - парабола, ветви направлены вверх.
Нули функции:
x² + 3x + 2 = 0
D = 9 - 8 = 1
Схематически график изображен на рис. 3.
у ≤ 0 при x ∈ [- 2; - 1]
ответ: 4) Решением неравенства является закрытый промежуток.
d)
- x² + 4 < 0 | · (- 1)
x² - 4 > 0
Рассмотрим функцию у = x² - 4.
Функция квадратичная, график - парабола, ветви направлены вверх.
Нули функции:
x² - 4 = 0
x² = 4
x = ± 2
Схематически график изображен на рис. 4.
у > 0 при x ∈ (- ∞; - 2) ∪ (2; + ∞)
ответ: 6) Решением неравенства является объединение двух промежутков.
2.
(x - a)(2x - 1)(x + b) > 0
x ∈(- 4; 1/2) ∪ (5; + ∞)
Решение неравенства показано на рис. 5.
Найдем нули функции у = (x - a)(2x - 1)(x + b).
(x - a)(2x - 1)(x + b) = 0
(x - a) = 0 или (2x - 1) = 0 или (x + b) = 0
x = a x = 1/2 x = - b
Из решения неравенства следует, что нулями являются числа - 4, 1/2 и 5. Значит
или
или
ответ: a = - 4, b = - 5 или a = 5, b = 4.
Подробнее - на -
Объяснение: