1. разделите с остатком: x^7 + 4x^6 - 3x^5 - 34x^4 - 51x^3 - 18x^2 + 12x + 8 на (x+2) 2. найдите остаток от деления многочлена 3x^7 - 25x^5 + 4x^2 - 140x - 10 на (x+3) 3. найдите значение многочлена x^7 - 24x^5 - 5x^4 + 60x^3 - 5 при x= -2 4. выясните, является ли x = -1 корнем многочлена 14x^5 + 20x^4 + 20x^3 + 15x^2 + 8x + 7 5. при каких значениях параметра b уравнение 9x + b^2 - (2 - корень(3) )*b - 2*корень(3) = b^4 * x - b^2 * (b + корень(3) ) не имеет корней? 6. в уравнении 5x^2 - kx + 1 = 0 определите параметр k так, чтобы разность корней уравнения равнялась 1. (теорема виета) 7. сократите дробь (x^5 + x^4 - 5x^3 - 5x^2 + 4x + 4) / (x^4 + 5x^3 + 5x^2 - 5x - 6) 8. найдите наименьшее значение выражения x(1)^2 * x(2)^2 + x(1)^2 * x(3)^2 + x(2)^2 * x(3)^2, используя теорему виета, если x(1); x(2); x(3) - корни уравнения x^3 - x + 3 = 0 9. докажите методом индукции a) 1^2 + 3^2 + + (2n - 1)^2 = (n(2n + 1)(2n - 1)) / 3 b) сумма кубов трех последовательных натуральных чисел делится нацело на 9 10. решите уравнение: |3x+1|-1 = |2-x| (a^2-1)x = a-1 a(x-1) / (x-a) = 0 (2x+10)/корень(x^2-16) > = 0 3.5(x+1)> =4x-(x-1)/2 (x+6)/(x^2-7x) - 4/(7-x)^2 > = 1/(x-7) |2x-1|< =|1-x| x^2-5|x|+6< 0 logx^2 (x-1)^2 < = 1 (log2 (8x) * log0.125x (2)) / (log0.5x (16)) < = 1/4
72км
Объяснение:
1-й мотоциклист, проехав расстояние от А до В, повернул и проехал от В 12км, пока не встретил 2-го мотоциклиста. Возьмем х за расстояние, которое проехал 2-й мотоциклист до встречи с 1-м. Следовательно расстояние от А до В, которое возьмем за у будет равным:
у=х+12.
Когда на обратном пути 1-й мотоциклист, проехав (1/6 у)км расстояния от А, встречает 2-го мотоциклиста (не обгоняет!). Значит расстояние между А и В будет равным:
у=х +1/6 у.
Составляем систему уравнений:
у=х+12
у=х +1/6 у
х+12-х -1/6 у=у-у
12 -1/6 у=0
1/6 у=12
у=12•6=72км - расстояние между пунктами А и В.
то есть последние цифры чисел идут в следующем порядке : 2 4 8 6, 2 4 8 6, ... т.е. через каждые 4 номера последняя цифра числа повторяется. 2013= 2012+1 - тогда 2^2013 кончается на 2. аналогично с остальными.
степени 7: 7 49 ... кончаются на 7 9 3 1, 7 9 3 1... последняя цифра аналогично повторяется каждые 4 степени, 2014=2012+2 - тогда 7^2014 кончается на 9
степени 9: 9 81 729... последние цифры: 9 1, 9 1, 9 1... повторяются каждые 2 степени. то есть 9 в четной степени кончается на 1, в нечетной - на 9, 9^2015 - кончается на 9.
Теперь определим последнюю цифру получаемого числа, сложив последние цифры этих чисел:
2+9+9=20 - кончается на 0, значит и сумма этих трех кончается на 0, значит, само число делится на 10