1.Разложите многочлен на множители группировки и заполните поле со вторым множителем.
а) 21y + 6xy – 10x – 35 = ( 2x+7)∙() ;
б) 35ab – 42ac + 20b – 24c = ( 7a+4)∙()
2.Разложите на множители левую часть уравнения и найдите его корень.
1) 3x^3 – 21x^2 + 4x – 28 = 0 ; x =
2) y^3 + 11y^2 + 5y + 55 = 0 ; y =
1) Каково взаимное расположение прямых EF и AB?
(Уточняем - в плоскости α лежит только АД, а ВС - не лежит. В противном случае ВЕ и СF не пересекали бы плоскость α, а лежали в ней).
ВС параллельна АD ⇒ параллельна плоскости α.
АD параллельна ВС, ЕF параллельна ВС. Две прямые , параллельные третьей прямой, параллельны.
⇒ ЕF параллельна АD и параллельна плоскости АВСD, но не параллельна АВ, которая пересекается с АD.
⇒ Прямые EF и AB - скрещивающиеся.
2) Чему равен угол между прямыми EF и AB, если ABC = 150°?
Углом между скрещивающимися прямыми называется угол между пересекающимися прямыми, соответственно параллельными данным.
Сумма углов при боковой стороне трапеции 180°, следовательно, угол ВАD=180°-150°=30°.
Проведем в плоскости ВЕF прямую ЕК, параллельную АВ.
ЕК|║АВ; ЕF║АD Углы с соответственно параллельными сторонами равны, если они оба острые или оба тупые.⇒
∠FЕК=∠ВАD=30°
-----------
ВЕ и СF могут быть проведены в плоскости АВСD.
Тогда ЕD будет лежать на АD и в этом случае непараллельные прямые EF и АВ лежат в одной плоскости. Тогда АВ и EF пересекyтся.
1) f'(x)=6x^2-6x-12;
f'(x)=0 <=> 6x^2-6x-12=0 |:6
x^2-x-2=0
x1=2 - не входит в промежуток в условии
x2=-1
f(-2)=-16-12+24+24=20
f(1)=2-3+12+24=35
f(-1)=-2-3+12+24=31;
ответ: minf(x)=f(-2)=20; maxf(x)=f(1)=35;
2) f'(x) = -sin2x*2+sinx*2
f'(x)=0 <=> 2sinx-2sin2x=0 |:2
sinx-sin2x=0; sinx-2sinxcosx=0; sinx(1-2cosx)=0; sinx=0 или cosx=-1/2;
x=pi * n, n принадлежит Z или x=+-2pi/3+2pi*k, k принадлежит Z;
f(-pi/3)=cos(-2pi/3) - 2cos(pi/3)=-1/2-2*1/2=-1/2-1=-3/2
f(pi)=cosx(2pi) - 2cos(pi)=1+2=3;
f(2pi/3)=cos(4pi/3)-2(2pi/3)=-1/2+2*1/2=-1/2+1=1/2;
ответ: minf(x)=f(-pi/3)=-3/2; maxf(x)=f(pi)=3;