1. Решить графически систему уравнений x-y=2,
x+3y=6
2. Решить систему уравнений подстановки x+2y=11,
2x-3y= 1
3. Решить систему уравнений сложения 3x+2y=6
4x-2y=8
4. Решить систему уравнений любым удобным б) x.3-y.15=1
4x-5(x-2y)=51 5x-3y= -15
x.y-єто дробь
Объяснение:
1) разложим числитель и знаменатель на множители. Из числителя вынесем 8 как общий множитель, в знаменателе воспользуемся формулой сокращённого умножения a^2-b^2 = (a-b)(a+b). Тогда будет 8*(x+4)/((x-4)(x+4)) => 8/(x-4) учитывая что x≠-4
2) 1) 7a/(b-3) и b/((b-3)(b+3)) => 7a*(b+3)/((b-3)(b+3)) и b/((b-3)(b+3))
Под 2) 1/(х-3)^2 и 1/((х-3)(х+3)) => (х+3)/((х-3)^2)*(х+3)) и (х-3)/((х-3)^2)*(х+3))
Номер 3)
1) t^2/(3*(t-2)) + 4/(3*(2-t)) => t^2/(3*(t-2)) — 4/(3*(t-2)) => (t^2-4)/(3*(t-2)) => (t+2)/3 с учётом t≠-2
2) a^2/((a-8)(a+8)) - a/(a+8) => (a^2-a*(a-8))/((a-8)(a+8)) => 8a/((a-8)(a+8))
2t^2 - 18t + 40 = 0; t^2 - 9t + 20 = 0; t = 4 или t = 5, поэтому уравнений, удовлетворяющих данному условию два:
(х - 5)^2 + (y - 5)^2 = 5^2 или (х -4)^2 + (y - 4)^2 = 5^2