Время первого велосипедиста 1час + 45мин = 1 3/4часа. Второй велосипедист едет быстрее, т.к. они выехали навстречу друг другу одновременно, второй затратил на расстояние до встречи 45мин, а первый велосипедист затем проехал это расстояние за час! S = V·t. ⇒ V₁t₁ = V₂t₂ V₁/V₂ = t₂/t₁ = 60мин/45мин=3/4. Из этого же соотношения, подставляя уже время, затраченное на весь путь первым велосипедистом (t₁ =1 3/4 часа=7/4 часа), найдем время t₂, затраченное на весь путь вторым велосипедистом. V₁t₁=V₂t₂; ⇒ t₂ = (V₁/V₂)t₁ = (3/4)·7/4 часа =21/16часа = 1 5/16 часа ≈ 1 час 19мин
Пусть Х км/ч - собственная скорость катера, а У км/ч скорость реки. Скорость катера по течению составляет (х+у) км/ч, а скорость катера против течения - (х-у) км/ч. За 2 часа по озеру катер проплывает 2х км, а плот за 15 часов проплывает по реке 15у км. Эти расстояния равны между собой. Против течения реки за 6 часов катер х-у) км, а по течению за 4 часа - 4(х+у). Разница между расстоянием против течения и расстоянием по течению реки составила 6(х-у)-4(х+у) или 10 км. Составим и решим систему уравнений: 2х=15у 6(х-у)-4(х+у)=10
2х=15у
6(х-у)-4(х+у)=10
х=15у:2
6х-6у-4х-4у=10
х=7,5у
2х-10у=10
х=7,5у
2*7,5у-10у=10
х=7,5у
15у-10у=10
х=7,5у
5у=10
х=7,5у
у=10:5
х=7,5у
у=2
х=7,5*2
у=2
х=15
у=2
ответ: собственная скорость катера 15 км/ч.