1.Решите неравенство:
а) 2(х-1) ≤ 3 (х+1).
б) 3у (1-4у) – (у - 12у2) >21.
2.Решить систему неравенств и изобразить множество его решений на координатной прямой:
а) { 3х -15 > 0,
4х > 16.
б) {0,4(х-3) – х ≥ 3,
0,5 – 4(х-2) < - 2,3.
3. Решите двойное неравенство:
-3≤ 14х+15≤ 45
сумма цифр равна 10, т.е х+у=10
переставили цифры: ух, теперь ух=10у+х
цифру единиц увеличили на 1, т.е. 10у+х+1
и раз новое число в 2 раза больше изначального можно составить уравнение:
10у+х+1=2(10х+у)
10у-2у=20х-х-1
8у=19х-1
выразим из первого уравнения х+у=10: у=10-х
8(10-х)=19х-1
19х+8х=80+1
27х=81
х=3
тогда у=10-х=10-3=7
получилось число 37
проверяем сумма цифр: 3+7=10
Если цифры этого числа переставить и цифру единиц нового числа увеличить на 1: получаем 73+1=74
и 74/2=37
Радиус вписанной в многоугольник окружности равен отношению его площади к полупериметру
r=S:p, где р - полупериметр
Треугольник тоже многоугольник, и радиус вписанной в него окружности найдем по этой формуле.
Чтобы найти площадь треугольника, нужно знать его третью сторону, основание.
Высота известна, боковая сторона - тоже.
Высота делит равнобедренный треугольник на два равных прямоугольных, в которых боковая сторона - гипотенуза. высота и половина основания - катеты..
Найдем половину основания по т.Пифагора:
0,5а=√(225-144)=9 см
Основание равно 2*9=18 см
Площадь треугольника
S=ah:2=18*12:2=108 см²
полупериметр
р=(18+30):2=24
r=108:24=4,5 см
Треугольник равнобедренный. Для вписанной в равнобедренный треугольник окружности, когда известны все стороны и высота, можно вывести формулу:
r=0,5*bh:0,5(2a+b)
или произведение высоты на основание, деленное на периметр.
r=bh:Р
r=18*12:(30+18)=4,5