Соотношение параметров квадрата
Приведём формулы периметра Р и площади S квадрата через длину стороны а.
периметр квадрата Р равен учетверённому размеру его стороны а: Р = 4 * а;
площадь квадрата S равна квадрату его стороны а: S = a²;
периметр и площадь квадрата связаны между собой. так как в их формулах общий параметр - сторона квадрата: S = P² / 16.
Для понятного объяснения задачи увеличим по заданию его сторону в 3 раза.Тогда новая сторона квадрата станет а1 = 3 * а.
Вычисление увеличения периметра и площади квадрата
Чтобы узнать, как при этом изменились периметр и площадь квадрата, подставим в формулы Р и S вместо "а" новое значение стороны "а1". Тогда:
Р1 = 4 * а1 = 4 * (3 * а ) = 12 * а;
S1 = а1² = (3 * а)² = 9 * а².
После того, как выразили новый периметр Р1 и площадь S1 через начальное значение стороны "а", можно ответить на вопрос задания:
для вычислений используем написанные выше формулы для площади S и периметра P;
чтобы узнать, во сколько раз увеличится периметр квадрата, нужно разделить Р1 на Р;
чтобы узнать, во сколько раз увеличится площадь квадрата, нужно разделить S1 на S.
Согласно выше сказанного, ответим на вопросы задания:
во сколько раз увеличился периметр квадрата, для чего разделим (Р1 : Р) = (12 * а) : (4 * а) = 3 (раза);
во сколько раз увеличится площадь квадрата, для чего разделим (S1 : S) = (9 * а²) : (а²) = 9 (раз).
заметим, что если периметр квадрата увеличился в 3 раза, как и сторона квадрата, то площадь, увеличивается в (3)² = 9 раз.
ответ: периметр увеличится в 3 раза, площадь увеличится в 9 раз.
1. 1) (c - 6)2 = 2c - 12.
3) (5 - a)(5 + a) = 25 - a^2.
2) (2a - 36)2 = 4a - 72,
4) (7x + 10y)(10y - 1x) = 70xy - 7x^2 + 100y^2 - 10xy^2,
2. 1) ь? - що це?
3) 100 - 9x^2 = (10 - 3x)(10 + 3x).
2) c? - а це що?
4) 4a + 20ab + 25b^2 = (2a + 5b)^2 (напевно там повинно бути 4a^2)
4.
1 варіант
4(3y + 1)^2 - 27 = (4y + 9)(4y - 9) + 2(5y + 2)(2y - 7)
4(9y^2 + 6y + 1) - 27 = 16y^2 - 81 + 2(10y^2 - 35y + 4y - 14)
36y^2 + 24y + 4 - 27 = 16y^2 - 81 + 20y^2 - 70y + 8y - 28
36y^2 + 24y - 16y^2 - 20y^2 - 70y + 8y = 27 - 4 - 81 - 28
54y = - 29
y = - 29 / 54
2 варіант
4 * 9y^2 + 6y + 1 - 27 = 16y^2 - 81 + 2 * 10y^2 - 35y + 4y - 14
36y^2 + 6y + 1 - 27 = 16y^2 - 81 + 20y^2 - 35y + 4y - 14
36y^2 + 6y - 16y^2 - 20y^2 + 35y - 4y = 27 - 1 - 81 - 28
37y = - 83
y = - 83 / 37
y = - 2 9/37
Напишіть хтось, який правильний. Може десь є помилка.
5, 6 - що це за знаки питання?
Соотношение параметров квадрата
Приведём формулы периметра Р и площади S квадрата через длину стороны а.
периметр квадрата Р равен учетверённому размеру его стороны а: Р = 4 * а;
площадь квадрата S равна квадрату его стороны а: S = a²;
периметр и площадь квадрата связаны между собой. так как в их формулах общий параметр - сторона квадрата: S = P² / 16.
Для понятного объяснения задачи увеличим по заданию его сторону в 3 раза.Тогда новая сторона квадрата станет а1 = 3 * а.
Вычисление увеличения периметра и площади квадрата
Чтобы узнать, как при этом изменились периметр и площадь квадрата, подставим в формулы Р и S вместо "а" новое значение стороны "а1". Тогда:
Р1 = 4 * а1 = 4 * (3 * а ) = 12 * а;
S1 = а1² = (3 * а)² = 9 * а².
После того, как выразили новый периметр Р1 и площадь S1 через начальное значение стороны "а", можно ответить на вопрос задания:
для вычислений используем написанные выше формулы для площади S и периметра P;
чтобы узнать, во сколько раз увеличится периметр квадрата, нужно разделить Р1 на Р;
чтобы узнать, во сколько раз увеличится площадь квадрата, нужно разделить S1 на S.
Согласно выше сказанного, ответим на вопросы задания:
во сколько раз увеличился периметр квадрата, для чего разделим (Р1 : Р) = (12 * а) : (4 * а) = 3 (раза);
во сколько раз увеличится площадь квадрата, для чего разделим (S1 : S) = (9 * а²) : (а²) = 9 (раз).
заметим, что если периметр квадрата увеличился в 3 раза, как и сторона квадрата, то площадь, увеличивается в (3)² = 9 раз.
ответ: периметр увеличится в 3 раза, площадь увеличится в 9 раз.
1. 1) (c - 6)2 = 2c - 12.
3) (5 - a)(5 + a) = 25 - a^2.
2) (2a - 36)2 = 4a - 72,
4) (7x + 10y)(10y - 1x) = 70xy - 7x^2 + 100y^2 - 10xy^2,
2. 1) ь? - що це?
3) 100 - 9x^2 = (10 - 3x)(10 + 3x).
2) c? - а це що?
4) 4a + 20ab + 25b^2 = (2a + 5b)^2 (напевно там повинно бути 4a^2)
4.
1 варіант
4(3y + 1)^2 - 27 = (4y + 9)(4y - 9) + 2(5y + 2)(2y - 7)
4(9y^2 + 6y + 1) - 27 = 16y^2 - 81 + 2(10y^2 - 35y + 4y - 14)
36y^2 + 24y + 4 - 27 = 16y^2 - 81 + 20y^2 - 70y + 8y - 28
36y^2 + 24y - 16y^2 - 20y^2 - 70y + 8y = 27 - 4 - 81 - 28
54y = - 29
y = - 29 / 54
2 варіант
4(3y + 1)^2 - 27 = (4y + 9)(4y - 9) + 2(5y + 2)(2y - 7)
4 * 9y^2 + 6y + 1 - 27 = 16y^2 - 81 + 2 * 10y^2 - 35y + 4y - 14
36y^2 + 6y + 1 - 27 = 16y^2 - 81 + 20y^2 - 35y + 4y - 14
36y^2 + 6y - 16y^2 - 20y^2 + 35y - 4y = 27 - 1 - 81 - 28
37y = - 83
y = - 83 / 37
y = - 2 9/37
Напишіть хтось, який правильний. Може десь є помилка.
5, 6 - що це за знаки питання?