Решаем уравнение х ( х² - 64 ) = 0 Произведение двух множителей равно нулю, когда хотя бы один из множителей равен нулю: х = 0 или х² - 64 =0 (х-8)(х+8)=0 х - 8 = 0 или х + 8 = 0 х = 8 или х = - 8 Отмечаем точки х=0 х = 8 и х = - 8 на числовой прямой и находим знаки функции у = х( х²- 64) на каждом промежутке. Можно найти на одном промежутке и потом знаки будут чередоваться. f ( 10) = 10·(10²- 64)>0 - + - + (-8)(0)(8) ответ. х∈ (-∞; - 8) U (0; 8)
ВЫПОЛНИМ ОПЕРАЦИЮ ПОТЕНЦИИРОВАНИЯ ТОГДА 1-2х ≤ 5х+25 так как основание лог меньше1 7х≥-24 х≥-24/7 Промежуток (-24/7 ; +бесконечность)
log3(x-6)+log3(x-8)>log3(27) log3 {(x-6)(x-8)}>log3(27) потенциируем обе части тогда (x-6)(x-8)>27 но тут не получается красивого решения, возможно в условии ошибка?
в третьем lgx (lgx+1) < 0 совокупность двух систем совокупность: первая система: lgx<0 ⇒решений нет (lgx+1)> 0 ⇒ вторая lgx>0 ⇒ промежуток (0;+бесконечность) (lgx+1)< 0 ⇒ lgx<-lg10 ⇒ х<0,1
х ( х² - 64 ) = 0
Произведение двух множителей равно нулю, когда хотя бы один из множителей равен нулю:
х = 0 или х² - 64 =0
(х-8)(х+8)=0
х - 8 = 0 или х + 8 = 0
х = 8 или х = - 8
Отмечаем точки
х=0 х = 8 и х = - 8 на числовой прямой и находим знаки функции у = х( х²- 64) на каждом промежутке.
Можно найти на одном промежутке и потом знаки будут чередоваться.
f ( 10) = 10·(10²- 64)>0
- + - +
(-8)(0)(8)
ответ. х∈ (-∞; - 8) U (0; 8)
1-2х ≤ 5х+25 так как основание лог меньше1
7х≥-24
х≥-24/7
Промежуток (-24/7 ; +бесконечность)
log3(x-6)+log3(x-8)>log3(27)
log3 {(x-6)(x-8)}>log3(27) потенциируем обе части тогда
(x-6)(x-8)>27
но тут не получается красивого решения, возможно в условии ошибка?
в третьем lgx (lgx+1) < 0 совокупность двух систем
совокупность:
первая система:
lgx<0 ⇒решений нет
(lgx+1)> 0 ⇒
вторая
lgx>0 ⇒ промежуток (0;+бесконечность)
(lgx+1)< 0 ⇒ lgx<-lg10 ⇒ х<0,1
x∈(0;0,1)