3*9^n + 7*7^2n = 3*(3^2)^n + 7*7^2n = 3^3n + 7^3n. Докажем индукцией по n кратность исходного выражения 10. При n = 1 кратность подтверждается: 3^3 + 7^3 = 27 + 343 = 370 = 37*10. Допустим, что 3^3n + 7^3n кратно 10. Докажем, что для любого n оно кратно и при n + 1. Тогда 3^3(n+1) + 7^3(n+1) = 3^3n*3 + 7^3n*7 = (3+7)*(3^n+7^3n) - 3*7^3n - 7*3^3n = (3+7)*(3^3n+7^3n) - 3*7(3^3(n-1) + 7^3(n-1)) = 10*(3^3n+7^3n) - 21*(3^3(n-1) + 7^3(n-1)). Первый член кратен 10, так же, как и второй, поскольку 3^3(n-1) + 7^3(n-1) кратно 10 по предположению индукции. Следовательно, исходное число 3*9^n + 7*7^2n кратно 10 при любом натуральном n.
y(3) = 3³ - 9*3² + 24*3 - 1= 27 - 81 + 72 - 1= 17
y(6) = 6³ - 9*6² + 24*6 - 1= 216 - 324 + 144 - 1 = 35
2) Найдём критические точки, принадлежащие этому отрезку, для этого найдём производную и приравняем её к нулю:
y' = (x³ - 9x² + 24x - 1)' = 3x² - 18x + 24
3x² - 18x + 24 = 0
x² - 6x + 8 = 0
x₁ = 4 x₂ = 2 - по теореме, обратной теореме Виетта.
x = 2 - не подходит так как не принадлежит отрезку [3 ; 6]
3) Найдём значение функции в критической точке x = 4:
y(4) = 4³ - 9*4² + 24*4 - 1= 64 - 144 + 96 - 1 = 15
4) Сравним значения функции на концах отрезка и в критической точке. Наибольшее число будет наибольшим значением функции, а наименьшее - наименьшим значением функции.
Наибольшее значение равно 35, а наименьшее 15.