1) Решите уравнение (в + 1)·х = 3 – в ответы: а) при в = 2 нет корней; при в ≠2, х = ; б) при в = -2 нет корней, при в ≠-2 х = в) при в = -1 нет корней, при а ≠ - 1
2) Решить уравнение (а – 1)х2 + 2 (2а – 1)х + 4 а + 3 = 0.
Решение. Рассмотрим два случая:
1. а = 1 – получим линейное уравнение 2х + 7 = 0, откуда х = - 3,5;
2. а 1 – получим квадратное уравнение.
Рассмотрим дискриминант: D = (2а – 1)2 – (а – 1)(4а + 3) = - 3а + 4.
Далее, если а > , то D < 0 и уравнение корней не имеет.
Если же а , то х1,2 = .
ответ: 1) если а > , то корней не
Всем привет пож-та, решить
Объяснение:
1)(2a - 5b)·(... - ...) = 6a^3 - 15a^2*b - 14ab + ...;
6a^3 : 2a = 3a^2
14ab : 2a = 7b
(2a - 5b)(3a^2 - 7b) = 6a^3 - 15a^2*b - 14ab + 35b^2
2)(... - ...)·(6x^2 - 5y^2) = 12x^3 + 42x^2*y - ... - 35y^3;
12x^3 : 6x^2 = 2x
-35y^3 : (-5y^2) = 7y
(2x + 7y)(6x^2 - 5y^2) = 12x^3 + 42x^2*y - 10xy^2 - 35y^3
3)(3a + 4c)·(... + ...) = 20ac + 8bc + 6ab + ...;
20ac : 4c = 5a
6ab : 3a = 2b
(3a + 4c)(5a + 2b) = 20ac + 8bc + 6ab + 15a^2
4)(... + ...)·(2a + 5b) = ... + 5ab + 8ac + 20b
Здесь опечатка, в конце должно быть 20bc
5ab : 5b = a
8ac : 2a = 4c
(a + 4c)(2a + 5b) = 2a^2 + 5ab + 8ac + 20bc
1) любые 2) любые 5) x ∈ (-∞;-6) ∪ (-6;6) ∪ (6;+∞) 6) любые 9) x ∈ (-∞;-5) ∪ (-5;+∞) 10) с ∈ (-∞;-4) ∪ (-4;3) ∪ (3;+∞)
Объяснение:
Дробь имеет смысл, если знаменатель не равен нулю.
Значит задача состоит в том, что мы должны найти значения икса, при которых знаменатель обращается в нуль.
1) знаменатель = 1 -> имеет смысл всегда
2) знаменатель = 7 -> имеет смысл всегда
5) x^2 - 36 = 0
x^2 = 36
x = +6 ; -6;
при x = +6 и x = -6 выражение не имеет смысл.
6) x^6 + 1 = 0
x^6 = -1
степень 6 кратна двум, это значит, что любое число (даже отрицательное) в итоге будет ≥ 0.
Например (-1)^2 = 1.
9) x^2 + 10x + 25 = 0
формула дискриминанта: D = b^2 - 4ac.
D = 10^2 - 4*1*25 = 100 - 100 = 0
D = 0 => x = (-b)/2 = -10/2 = -5
При x = -5 выражение не имеет смысла.
10) выражение, очевидно, не имеет смысла при c - 3 =0 и с + 4 = 0
с = 3 и с = -4.