Попробую решить) Итак, при х = -4,5 неравенство x^2+9x+a>0 - не верно. Значит, при х = -4,5 верно следующее неравенство: x^2+9x+a<0 ( поменяли знак неравенства на противоположный). Подставим "-4,5" вместо икса и получим: (-4,5)^2+9*(-4,5)+a<0 20,25-40,5+a<0 -20,25+a<0 a<20,25 - при этих "a" неравенство x^2+9x+a<0 - ВЕРНО,а неравенство x^2+9x+a>0 - НЕ ВЕРНО. И верным оно будет при a>20,25 ( поменяли знак неравенства на противоположный). Проверим: подставим в формулу неравенства любое значение "a", которое больше 20,25( например,21). Далее,чтобы решить неравенство, нам надо найти корни уравнения x^2+9x+21=0, но т.к. дискриминант <0, то решением неравенства x^2+9x+21>0 будут все иксы. ответ: a> 20,25.
Сначала просто решим неравенство методом интервалов: Найдём корни числителя: ; 3x/2=-1; x= -2/3; Найдём корни знаменателя: x-4=0; x=4;
Теперь начертим числовую прямую, отметим на ней точки -2/3 и 4 и посмотрим, где всё выражение принимает значения больше нуля (числовая прямая прикреплена). Мы видим, что всё выражение больше нуля при x>4 и x< -2/3 Поскольку нам нужен наименьшее целое положительное решение, мы берём число 5 (4 мы взять не можем, т.к. в знаменателе будет 0 и потому, что 4 не входит в получившиеся лучи). ответ: 5.
Итак, при х = -4,5 неравенство x^2+9x+a>0 - не верно.
Значит, при х = -4,5 верно следующее неравенство:
x^2+9x+a<0 ( поменяли знак неравенства на противоположный).
Подставим "-4,5" вместо икса и получим:
(-4,5)^2+9*(-4,5)+a<0
20,25-40,5+a<0
-20,25+a<0
a<20,25 - при этих "a" неравенство x^2+9x+a<0 - ВЕРНО,а неравенство x^2+9x+a>0 - НЕ ВЕРНО. И верным оно будет при a>20,25 ( поменяли знак неравенства на противоположный).
Проверим: подставим в формулу неравенства любое значение "a", которое больше 20,25( например,21). Далее,чтобы решить неравенство, нам надо найти корни уравнения x^2+9x+21=0, но т.к. дискриминант <0, то решением неравенства x^2+9x+21>0 будут все иксы.
ответ: a> 20,25.
Сначала просто решим неравенство методом интервалов:
Найдём корни числителя:
;
3x/2=-1;
x= -2/3;
Найдём корни знаменателя:
x-4=0;
x=4;
Теперь начертим числовую прямую, отметим на ней точки -2/3 и 4 и посмотрим, где всё выражение принимает значения больше нуля (числовая прямая прикреплена).
Мы видим, что всё выражение больше нуля при x>4 и x< -2/3
Поскольку нам нужен наименьшее целое положительное решение, мы берём число 5 (4 мы взять не можем, т.к. в знаменателе будет 0 и потому, что 4 не входит в получившиеся лучи).
ответ: 5.