В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
вёдра
вёдра
19.09.2022 13:45 •  Алгебра

1)Розв'язати рівняння\ Решить уравнение а) 5sin^2 2x+ 2sin2x cos2x -3 cos^2 2x=2
б) cos 2x + cos 6x = 0
2) Довести тотожність\ Довести тотожность
sin(π\4 +2)= cos(π\4 - 2)
3) Розв'язати нерівність \ Решить неравенство
cosx ≥ √3\2


1)Розв'язати рівняння\ Решить уравнение а) 5sin^2 2x+ 2sin2x cos2x -3 cos^2 2x=2 б) cos 2x + cos 6x

Показать ответ
Ответ:
лёша2002z
лёша2002z
10.02.2023 03:11

cos^2\frac{x}{2} =1+cosx\\ \\ sin^2x=1-cos^2x

5-4\cdot (1-cos^2x)-8\cdot (1+cosx)=3a\\ \\

Получаем квадратное уравнение относительно

cosx=t

4t^2-8t-7-3a=0

Это уравнение имеет хотя бы один корень, если D ≥0

D=64+16(7+3a)=16(11+3a)

D≥0⇒  11+3a≥0⇒  a≥ -11/3

t₁=1- (√(11+3а))/2    или   t₂=1+ (√(11+3а))/2

Обратная замена приводит к уравнениям вида cos=t₁  или   cosx=t₂

Чтобы эти уравнения имели хотя бы один корень, необходимо, что бы

-1 ≤ t₁ ≤1    или  -1 ≤ t₂ ≤1  

Решаем неравенства:

-1 ≤1+ (√(11+3а))/2  ≤1

-2≤√(11+3а))/2≤0

-4≤√(11+3а)≤0

Решением неравенства является

11+3a=0

a=-11/3

t₁=t₂=1/2

cosx=1/2

x=±(π/3)+2πn, n∈Z

Неравенство

-1 ≤1- (√(11+3а))/2  ≤1

также приводит к ответу a=-11/3

О т в е т. При а=-11/3

x=±(π/3)+2πn, n∈Z

0,0(0 оценок)
Ответ:
Error69
Error69
09.11.2021 21:17
Дано: sinx-siny=m; cosx+cosy=n. Найти: sin(x-y) и cos(x-y).
Решение:
1. Воспользуемся формулами разность синусов и сумма косинусов:
sinx-siny=2sin \frac{x-y}{2}cos \frac{x+y}{2}=m; cosx+cosy=2cos \frac{x+y}{2}cos \frac{x-y}{2}=n.
Заметим, что оба равенства содержат один и тот же член: cos \frac{x+y}{2}. Выразим его из обоих равенств:
cos \frac{x+y}{2}= \frac{m}{2sin \frac{x-y}{2}};cos \frac{x+y}{2}= \frac{n}{2cos \frac{x-y}{2}}.
В получившихся равенствах левые части равны, значит, равны и правые части:
\frac{m}{2sin \frac{x-y}{2}}= \frac{n}{2cos \frac{x-y}{2}}.
Преобразуем данное равенство:
\frac{2sin \frac{x-y}{2}}{2cos \frac{x-y}{2}}= \frac{m}{n};
\frac{sin \frac{x-y}{2}}{cos \frac{x-y}{2}}= \frac{m}{n};
( \frac{sin \frac{x-y}{2}}{cos \frac{x-y}{2}})^{2}=( \frac{m}{n})^{2};
\frac{sin^{2} \frac{x-y}{2}}{cos^{2} \frac{x-y}{2}}= \frac{m^{2}}{n^{2}};
Теперь используем формулы понижения степени синуса и косинуса:
\frac{1-cos(x-y)}{2}: \frac{1+cos(x-y)}{2}= \frac{m^{2}}{n^{2}};
Преобразуем данное равенство:
\frac{1-cos(x-y)}{1+cos(x-y)}= \frac{m^{2}}{n^{2}};
n²(1-cos(x-y))=m²(1+cos(x-y));
n²-n²cos(x-y)=m²+m²cos(x-y);
m²cos(x-y)+n²cos(x-y)=n²-m²;
cos(x-y)(m²+n²)=n²-m²;
cos(x-y)= \frac{n^{2}-m^{2}}{m^{2}+n^{2}}.
Используя основное тригонометрическое тождество, выразим sin(x-y):
sin(x-y)= \sqrt{1-( \frac{n^{2}-m^{2}}{m^{2}+n^{2}})^{2}}.
ответ: sin(x-y)= \sqrt{1-( \frac{n^{2}-m^{2}}{m^{2}+n^{2}})^{2}};cos(x-y)= \frac{n^{2}-m^{2}}{m^{2}+n^{2}}.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота