1. С алгоритма Евклида найти НОД чисел: А) 620, 480,
Б) 1142 и 880;
В) 4960 и 2500;
Г) 849 и 236;
2. Найти НОД и НОК чисел:
А) 10172 и 416;
Б) 22386 и 6546;
В) 2012 и 946
3. Найдите наибольший общий делитель четырех чисел:
А) 89, 293, 570 и 36
Б) 28, 126, 452, 500
и я вам сегодня
Q((x + 1) - 1) = (x + 1)^2 - 2(x + 1) - 1
Q(x) = x^2 - 2
Подставляем уже найденный Q(x) в первое равенство.
P(x^2 - 2) = x^4 - 5x^2 + 7
Пусть P(x) = ax^n + ..., проследим за старшей степенью.
P(x^2 + ...) = a(x^2 + ...)^n + ... = a x^(2n) + ...
Сравниваем с имеющим равенством и получаем, что a = 1, n = 2, т.е. P(x) — приведённый квадратный трёхчлен. Представим его в виде P(x) = x^2 + ux + v и будем искать константы u и v.
P(x) = x^2 + ux + v
P(x^2 - 2) = (x^2 - 2)^2 + u(x^2 - 2) + v
P(x^2 - 2) = x^4 - (4 - u)x^2 + (4 - 2u + v)
Выражение в правой части равенства при всех x должно совпадать с x^4 - 5x^2 + 7, при одинаковых степенях должны стоять одинаковые коэффициенты.
P(x) = x^2 - x + 1
(10x²-1)/(x-1)(x+2)² = (ax-3)/(x+2)² + b/(x+2) + c/(x-1) => (10x²-1)/(x-1)(x+2)² = ((ax-3)(x-1) + b(x+2)(x-1) + c(x+2)²)/(x+2)²(x-1) => 10x²-1 = (ax-3)(x-1) + b(x+2)(x-1) + c(x+2)² = ax²-ax-3x+3+bx²-bx+2bx-2b+cx²+4cx+4c = (a+b+c)x² + (b+4c-a-3)x+3-2b+4c => a+b+c = 10, b+4c-a-3 = 0, 3-2b+4c = -1. Сложим первое и второе равенства: a+b+c+b+4c-a-3 = 10 => 2b+5c = 13 => 2b = 13-5c. Подставим этот результат в третье равенство: 3-13+5c+4c = -1 => 9c = -1+10 = 9 => c = 1. Тогда из 3-2b+4c = -1 следует, что 2b = 4(c+1) => b = 4(c+1)/2 = 4*2/2 = 4. И a = 10 - 1 - 4 = 5.
ответ: a = 5, b = 4, c = 1.