а) х² - х + 1/4
х может принимать любые действительные значения.
б) (х+1)/(х²+9) + 2х
Знаменатель дроби не должен равняться нулю.
Рассматриваем знаменатель х²+9 и видим, что он всегда больше нуля, поэтому опять:
в) 14\3х-6
Рассматриваем знаменатель 3х - 6 ≠ 0 ⇒ 3х ≠ 6 ⇒ х ≠ 2
х может принимать любые действительные значения, кроме х = 2
г) х²-3/(3-2х)(х+5)
Рассматриваем знаменатель
1) 3 - 2х ≠0 ⇒ -2х ≠ -3 ⇒ х ≠ 1,5
2) х+5 ≠ 0 ⇒ х ≠ -5
х может принимать любые действительные значения, кроме х = 1,5 и х = -5
д)х²+1/х(х+3)
1) х ≠0
2) х+3 ≠ 0 ⇒ х ≠ -3
х может принимать любые действительные значения, кроме х = 0 и х = -3
е) 2х/(х-1)²·(х²-4)
1) х - 1 ≠ 0 ⇒ х ≠ 1
2) х² - 4 ≠ 0 ⇒ х² ≠ 4 ⇒ х ≠ -2 и х ≠ 2
х может принимать любые действительные значения, кроме х = 1, х = -2 и х = 2
а) х2+5х-14=(х-2)(х+7);
х2+5х-14=0;
д=25-4*(-14)=25+56=81;
х1=(-5+9)/2=4/2=2;
х2=(-5-9)/2=-14/2=-7;
б)16х2-14х+3=16(х-0,5)(х-0,375);
16х2-14х+3=0
д=(-14)2-4*16*3=196-192=4;
х1=(14+2)/32=16/32=0,5;
х2=(14-2)/32=12/32=0,375;
в)(3у2-7у-6)/(4-9у2)=3(у-3)(у+2/3)/-9(у-2/3)(у+2/3)=3(у-3)/(6-9у)=
(3у-9)/(6-9у)=3(у-3)/3(2-3у)=(у-3)/(2-3у);
3у2-7у-6=(у-3)(у+2/3);
3у2-7у-6=0
д=49-4*3*(-6)=49+72=121;
у1=(7+11)/6=18/6=3;
у2=(7-11)/6=-4/6=-2/3;
4-9у2=-9(у-2/3)(у+2/3);
4-9у2=0
9у2=4
у1=4/9=2/3;
у2=-2/3.
а) х² - х + 1/4
х может принимать любые действительные значения.
б) (х+1)/(х²+9) + 2х
Знаменатель дроби не должен равняться нулю.
Рассматриваем знаменатель х²+9 и видим, что он всегда больше нуля, поэтому опять:
х может принимать любые действительные значения.
в) 14\3х-6
Знаменатель дроби не должен равняться нулю.
Рассматриваем знаменатель 3х - 6 ≠ 0 ⇒ 3х ≠ 6 ⇒ х ≠ 2
х может принимать любые действительные значения, кроме х = 2
г) х²-3/(3-2х)(х+5)
Рассматриваем знаменатель
1) 3 - 2х ≠0 ⇒ -2х ≠ -3 ⇒ х ≠ 1,5
2) х+5 ≠ 0 ⇒ х ≠ -5
х может принимать любые действительные значения, кроме х = 1,5 и х = -5
д)х²+1/х(х+3)
Рассматриваем знаменатель
1) х ≠0
2) х+3 ≠ 0 ⇒ х ≠ -3
х может принимать любые действительные значения, кроме х = 0 и х = -3
е) 2х/(х-1)²·(х²-4)
Рассматриваем знаменатель
1) х - 1 ≠ 0 ⇒ х ≠ 1
2) х² - 4 ≠ 0 ⇒ х² ≠ 4 ⇒ х ≠ -2 и х ≠ 2
х может принимать любые действительные значения, кроме х = 1, х = -2 и х = 2
а) х2+5х-14=(х-2)(х+7);
х2+5х-14=0;
д=25-4*(-14)=25+56=81;
х1=(-5+9)/2=4/2=2;
х2=(-5-9)/2=-14/2=-7;
б)16х2-14х+3=16(х-0,5)(х-0,375);
16х2-14х+3=0
д=(-14)2-4*16*3=196-192=4;
х1=(14+2)/32=16/32=0,5;
х2=(14-2)/32=12/32=0,375;
в)(3у2-7у-6)/(4-9у2)=3(у-3)(у+2/3)/-9(у-2/3)(у+2/3)=3(у-3)/(6-9у)=
(3у-9)/(6-9у)=3(у-3)/3(2-3у)=(у-3)/(2-3у);
3у2-7у-6=(у-3)(у+2/3);
3у2-7у-6=0
д=49-4*3*(-6)=49+72=121;
у1=(7+11)/6=18/6=3;
у2=(7-11)/6=-4/6=-2/3;
4-9у2=-9(у-2/3)(у+2/3);
4-9у2=0
9у2=4
у1=4/9=2/3;
у2=-2/3.